GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, M., Guo, Z., Xu, S., Barry, P. H., Sano, Y., Zhang, L., Halldorsson, S. A., Chen, A.-T., Cheng, Z., Liu, C.-Q., Li, S.-L., Lang, Y.-C., Zheng, G., Li, Z., Li, L., & Li, Y. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau. Nature Communications, 12(1), (2021): 4157, https://doi.org/10.1038/s41467-021-24415-y.
    Description: The episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.
    Description: This work was supported by China Seismic Experimental Site (CSES) (2019CSES0104), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB26000000), the National Key Research and Development Program of China (2020YFA0607700), the National Natural Science Foundation of China (41930642, 41602341, 41772355, and 41702361), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0702), and the United Laboratory of High-Pressure Physics and Earthquake Science (2019HPPES02). P.H.B. was supported by the US National Science Foundation EAR Grant 1144559 during a portion of this work.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Methane emission from the geosphere is generally characterized by a radiocarbon-free signature and might preserve information on the deep carbon cycle on Earth. Here we report a clear relationship between the origin of methane-rich natural gases and the geodynamic setting of the West Pacific convergent plate boundary. Natural gases in the frontal arc basin (South Kanto gas fields, Northeast Japan) show a typical microbial signature with light carbon isotopes, high CH4/C2H6 and CH4/³He ratios. In the Akita-Niigata region – which corresponds to the slope stretching from the volcanic-arc to the back-arc –a thermogenic signature characterize the gases, with prevalence of heavy carbon isotopes, low CH4/C2H6 and CH4/³He ratios. Natural gases from mud volcanoes in South Taiwan at the collision zone show heavy carbon isotopes, middle CH4/C2H6 ratios and low CH4/³He ratios. On the other hand, those from the Tokara Islands situated on the volcanic front of Southwest Japan show the heaviest carbon isotopes, middle CH4/C2H6 ratios and the lowest CH4/³He ratios. The observed geochemical signatures of natural gases are clearly explained by a mixing of microbial, thermogenic and abiotic methane. An increasing contribution of abiotic methane towards more tectonically active regions of the plate boundary is suggested.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...