GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-15
    Description: The constitutions and absolute configurations of two so far unknown intermediates, (1S,2S,4S)-2-hydroxy-4-isopropylcyclohexane-1-carboxylate and (S)-3-isopropylpimelate, of anaerobic degradation of p-cymene in the bacterium "Aromatoleum aromaticum" pCyN1 are reported. These intermediates (as CoA esters) are involved in the further degradation of 4-isopropylbenzoyl-CoA formed by methyl group hydroxylation and subsequent oxidation of p-cymene. Proteogenomics indicated 4-isopropylbenzoyl-CoA degradation to involve (i) a novel member of class I benzoyl-CoA reductase (BCR) as known from Thauera aromatica K172 and (ii) a modified β-oxidation pathway yielding 3-isopropylpimeloyl-CoA analogously to benzoyl-CoA degradation in Rhodopseudomonas palustris. Reference standards of all four diastereoisomers of 2-hydroxy-4-isopropylcyclohexane-1-carboxylate as well as both enantiomers of 3-isopropylpimelate were obtained by stereoselective syntheses via methyl 4-isopropyl-2-oxocyclohexane-1-carboxylate. The stereogenic center carrying the isopropyl group was established using a rhodium-catalyzed asymmetric conjugate addition. X-ray crystallography revealed that the thermodynamically most stable stereoisomer of 2-hydroxy-4-isopropylcyclohexane-1-carboxylate is formed during p-cymene degradation. Our findings imply that the reductive dearomatization of 4-isopropylbenzoyl-CoA by the BCR of "A. aromaticum" pCyN1 stereospecifically forms (S)-4-isopropyl-1,5-cyclohexadiene-1-carbonyl-CoA
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Steen, A. D., Kusch, S., Abdulla, H. A., Cakic, N., Coffinet, S., Dittmar, T., Fulton, J. M., Galy, V., Hinrichs, K., Ingalls, A. E., Koch, B. P., Kujawinski, E., Liu, Z., Osterholz, H., Rush, D., Seidel, M., Sepulveda, J., & Wakeham, S. G. Analytical and computational advances, opportunities, and challenges in marine organic biogeochemistry in an era of "Omics". Frontiers in Marine Science, 7, (2020): 718, doi:10.3389/fmars.2020.00718.
    Description: Advances in sampling tools, analytical methods, and data handling capabilities have been fundamental to the growth of marine organic biogeochemistry over the past four decades. There has always been a strong feedback between analytical advances and scientific advances. However, whereas advances in analytical technology were often the driving force that made possible progress in elucidating the sources and fate of organic matter in the ocean in the first decades of marine organic biogeochemistry, today process-based scientific questions should drive analytical developments. Several paradigm shifts and challenges for the future are related to the intersection between analytical progress and scientific evolution. Untargeted “molecular headhunting” for its own sake is now being subsumed into process-driven targeted investigations that ask new questions and thus require new analytical capabilities. However, there are still major gaps in characterizing the chemical composition and biochemical behavior of macromolecules, as well as in generating reference standards for relevant types of organic matter. Field-based measurements are now routinely complemented by controlled laboratory experiments and in situ rate measurements of key biogeochemical processes. And finally, the multidisciplinary investigations that are becoming more common generate large and diverse datasets, requiring innovative computational tools to integrate often disparate data sets, including better global coverage and mapping. Here, we compile examples of developments in analytical methods that have enabled transformative scientific advances since 2004, and we project some challenges and opportunities in the near future. We believe that addressing these challenges and capitalizing on these opportunities will ensure continued progress in understanding the cycling of organic carbon in the ocean.
    Description: The Hanse-Wissenschaftskolleg Delmenhorst, Germany, sponsored the “Marine Organic Biogeochemistry” workshop in April 2019, of which this working group report was a part. The workshop was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number: 422798570. The Geochemical Society provided additional funding for the conference. AS was supported by DOE grant DE-SC0020369.
    Keywords: Chemometrics ; Natural marine organic matter ; FT-ICR-MS ; Analytical challenges ; HR-NMR ; Marine organic biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...