GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Society for Microbiology, 2001. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 67 (2001): 5179-5189, doi:10.1128/AEM.67.11.5179-5189.2001.
    Description: The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C20:1 and cy-C21 fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C18:0. These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C18 and C20 alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C20:1 and cy-C21, plus a series of iso-branched fatty acids (i-C15:0 to i-C21:0), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in 13C relative to source water CO2 by 10.9 and 17.2per thousand , respectively. The C20-21 fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6per thousand , respectively. The biomass of T. ruber grown on CO2 was depleted in 13C by only 3.3per thousand relative to C source. In contrast, biomass was depleted by 19.7per thousand when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3per thousand ). The depletion in the C20-21 fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO2. Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.
    Description: The work of Linda Jahnke and David Des Marais was supported by grants from NASA’s Exobiology Program and the NASA Astrobiology Institute. The work of Wolfgang Eder was supported by the Fonds der Chemischen Industrie (to K.O.S.). Work by Sherry Cady was supported by the NASA Exobiology and the NSF Life in Extreme Environments Programs.
    Keywords: Aquificales biomarkers ; Biofilm ; Pink streamer community (PSC)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 187172 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Microbialites are organosedimentary structures that can be constructed by a variety of metabolically distinct taxa. Consequently, microbialite structures abound in the fossil record, although the exact nature of the biogeochemical processes that produced them is often unknown. One such ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...