GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 29 (1995), S. 802-806 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 29 (1995), S. 2778-2781 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: The fate of disinfection byproducts during aquifer storage and recovery (ASR) is evaluated for aquifers in southern Nevada. Rapid declines of haloacetic acid (HAA) concentrations during ASR, with associated little change in Cl concentration, indicate that (HAAs) decline primarily by in situ microbial oxidation. Dilution is only a minor contributor to HAA concentration declines during ASR. Trihalomethane (THM) concentrations generally increased during storage of artificial recharge (AR) water and then declined during recovery. The decline of THM concentrations during recovery was primarily from dilution of current season AR water with residual AR water remaining in the aquifer from previous ASR seasons and native ground water. In more recent ASR seasons, for wells with the longest history of ASR, brominated THMs declined during storage and recovery by processes in addition to dilution. These conclusions about THMs are indicated by THM/Cl values and supported by a comparison of measured and model predicted THM concentrations. Geochemical mixing models were constructed using major-ion chemistry of the three end-member waters to calculate predicted THM concentrations. The decline in brominated THM concentrations in addition to that from dilution may result from biotransformation processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Inc
    Ground water monitoring & remediation 25 (2005), S. 0 
    ISSN: 1745-6592
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Monitoring data collected over a 6-year period show that a plume of chlorinated ethene–contaminated ground water has contracted significantly following treatment of the contaminant source area using in situ oxidation. Prior to treatment (1998), concentrations of perchloroethene (PCE) exceeded 4500 μg/L in a contaminant source area associated with a municipal landfill in Kings Bay, Georgia. The plume emanating from this source area was characterized by vinyl chloride (VC) concentrations exceeding 800 μg/L. In situ oxidation using Fenton's reagent lowered PCE concentrations in the source area below 100 μg/L, and PCE concentrations have not rebounded above this level since treatment. In the 6 years following treatment, VC concentrations in the plume have decreased significantly. These concentration declines can be attributed to the movement of Fenton's reagent–treated water downgradient through the system, the cessation of a previously installed pump-and-treat system, and the significant natural attenuation capacity of this anoxic aquifer. While in situ oxidation briefly decreased the abundance and activity of microorganisms in the source area, this activity rebounded in 〈6 months. Nevertheless, the shift from sulfate-reducing to Fe(III)-reducing conditions induced by Fenton's treatment may have decreased the efficiency of reductive dechlorination in the injection zone. The results of this study indicate that source-area removal actions, particularly when applied to ground water systems that have significant natural attenuation capacity, can be effective in decreasing the areal extent and contaminant concentrations of chlorinated ethene plumes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Total concentrations of formate, acetate, and isobutyrate varied from less than 5 to greater than 9,000 μmol/l over distances of 〈 3 m in ground water from a shallow hydrocarbon contaminated aquifer. Laboratory incubations of aquifer material indicate that organic acid concentrations were dependent on the amount of hydrocarbon loading in the sediment and the relative rates of microbial organic acid production and consumption. In heavily contaminated sediments, production greatly exceeded consumption and organic acid concentrations increased. In lightly contaminated sediments rates were essentially equal and organic acid concentrations remained low. Concentrations of dissolved calcium, magnesium, and iron generally were one to two orders of magnitude higher in organic acid-rich ground water than in ground water having low organic acid concentrations. Carbonate and Fe(III)-oxyhydroxide minerals were the likely sources of these elements. Similarly, concentrations of dissolved silica, derived from quartz and k-feldspar, were higher in organic acid-rich ground water than in other waters. The positive relation (r = 0.60, p 〈 .05, n = 16) between concentrations of silica and organic acids suggests that the microbially mediated buildup of organic acids in ground water enhanced quartz/k-feldspar dissolution in the aquifer, although it was not the only factor influencing their dissolution. A model that included organic acid microequivalents normalized by cation microequivalents significantly strengthened the correlation (r = 0.79, p 〈 .001, n = 16) between dissolved silica and organic acid concentrations, indicating that competition between silica and cations for complexation sites on organic acids also influenced quartz/k-feldspar dissolution. Physical evidence for enhanced mineral dissolution in organic acid-rich waters included scanning electron microscopy images of highly corroded quartz and k-feldspar grains from portions of the aquifer containing organic acid-rich ground water. Microporosity generated in hydrocarbon contaminated sediments may adversely affect remediation efforts that depend on the efficient injection of electron acceptors into an aquifer or on the recovery of solutes from an aquifer.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Ground water chemistry data collected over a six-year period show that the distribution of contaminants and redox processes in a shallow petroleum hydrocarbon-contaminated aquifer has changed rapidly over time. Shortly after a gasoline release occurred in 1990, high concentrations of benzene were present near the contaminant source area. In this contaminated zone, dissolved oxygen in ground water was depleted, and by 1994 Fe(lll) reduction and sulfate reduction were the predominant terminal electron accepting processes. Significantly, dissolved methane was below measurable levels in 1994, indicating the absence of significant methanogenesis. By 1996, however, depletion of solid-phase Fe(lll)-oxyhydroxides in aquifer sediments and depletion of dissolved sulfate in ground water resulted in the onset of methanogenesis. Between 1996 and 2000, water-chemistry data indicated that methanogenic metabolism became increasingly prevalent. Molecular analysis of 16S-rDNA extracted from sediments shows the presence of a more diverse methanogenic community inside as opposed to outside the plume core, and is consistent with water-chemistry data indicating a shift toward methanogenesis over time. This rapid evolution of redox processes reflects several factors including the large amounts of contaminants, relatively rapid ground water flow (∼0.3 m/day [∼1 foot/day]), and low concentrations of microbially reducible Fe(lll) oxyhydroxides (∼ 1 umol/g) initially present in aquifer sediments. These results illustrate that, under certain hydrologic conditions, redox conditions in petroleum hydrocarbon-contaminated aquifers can change rapidly in time and space, and that the availability of solid-phase Fe(lll)-oxyhydroxides affects this rate of change.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 38 (2000), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water δ2H values. The range of δ2H observed in monitoring wells sampled (−27.8 %c to −15.5 %c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than iso-topic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbialy cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (〉0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Rates of biodegradation were measured in a petroleum hydrocarbon-contaminated aquifer using a combination of field and laboratory methods. These methods are based on tracking concentration changes of substrates (both electron donors and acceptors) or final products of microbial metabolism over time. Ground water at the study site (Hanahan, South Carolina) is anoxic, and sulfate reduction is the predominant terminal electron accepting process. Laboratory studies conducted with sediment cored from the site showed that 14C-toluene was mineralized to 14CO2 with a first-order degradation rate constant (ktol) of -0.01 d−1 under sulfate-reducing conditions. Under nitrate-amended, Fe(III)-amended, or nonamended (methanogenic) conditions, toluene was not significantly mineralized. 14C-Benzene was degraded at low but measurable rates (kben= -0.003 d−1) under sulfate-reducing conditions whereas degradation under methanogenic conditions was negligible. These results illustrate the extreme sensitivity of laboratory-measured biodegradation rates to terminal electron-accepting conditions, and show the necessity of carefully matching experimental conditions to in situ conditions. Concentration decreases of toluene along aquifer flowpaths, when the uncertainty of ground-water flow velocities was considered, indicated ktol values ranging from -0.0075 to -0.03 d−1. Concentration decreases of sulfate and concentration increases of dissolved inorganic carbon (DIC), when normalized for assumed stoichiometric oxidation of toluene coupled to sulfate reduction, yielded a kso4 range of -0.005 to -0.02 d−1, and a kDIC value range of +0.00075 to +0.003 d−1. Because both laboratory and field methods have numerous sources of uncertainty, a combination of these methods is the most appropriate procedure for evaluating biodegradation rate constants in contaminated ground-water systems.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 30 (1992), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: In 1975, the loss of approximately 83,000 gallons of JP-4 grade jet fuel resulted in contamination of the shallow aquifer near North Charleston, South Carolina. To identify those factors likely to influence microbial activity under denitrifying conditions, we examined the fate of amended NO3, the effect of pH, NO3, and PO4 on denitrification, and the variability of denitrification in sediments collected at the site. Denitrification (N2O-N production) accounted for 98% of the depletion of NO3-N under anaerobic conditions. Both carbon mineralization and denitrification rates increased asymptotically with increasing NO3 to a maximum at approximately 1 mM NO3. Addition of up to 1 mM PO4 did not significantly increase N2O and CO2 production. Denitrification rates were at least 38% lower at pH = 4 than observed at pH = 7. Comparison of samples with differing degrees of hydrocarbon contamination indicated that at least a tenfold variation in sediment denitrification occurs at the North Charleston site.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 36 (2000), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of trihalomethanes in drinking water.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...