GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 82(2), pp. 147-150, ISSN: 00322490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: The authors report a hypothesis for the dynamical mechanisms responsible for the strengthening of the Southern Hemisphere circumpolar winds from the lower stratosphere to the surface due to the ozone hole. A general circulation model forced by stratospheric ozone depletion representative of the ozone hole period successfully reproduced these observed changes. Investigation of the dynamical characteristics of the model therefore provides some insight into the actual mechanisms. From this the authors suggest the following: 1) An initial (radiative) strengthening of the lower-stratospheric winds as a result of ozone depletion conditions the polar vortex so that fewer planetary waves propagate up from the troposphere, resulting in weaker planetary wave driving. 2) This causes further strengthening of the vortex, which results in an additional reduction in upward-propagating planetary waves and initiates a positive feedback mechanism in which the weaker wave driving and the associated strengthened winds are drawn downward to the tropopause. 3) In the troposphere the midlatitude jet shifts poleward in association with increases in the synoptic wave fluxes of heat and momentum, which are the result of a positive feedback mechanism consisting of two components: 4) increases in low-level baroclinicity, and the subsequent generation of baroclinic activity (associated with a poleward heat flux), are collocated with the jet latitudinal position, and 5) strengthening anticyclonic shear increases the refraction of wave activity equatorward (associated with a poleward momentum flux). Finally, 6) confinement of planetary waves in the high-latitude troposphere is an important step to couple the stratospheric changes to the tropospheric response.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-02
    Description: Two decades into the 21st century there is growing evidence for global impacts of Antarctic and Southern Ocean climate change. Reliable estimates of how the Antarctic climate system would behave under a range of scenarios of future external climate forcing are thus a high priority. Output from new model simulations coordinated as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) provides an opportunity for a comprehensive analysis of the latest generation of state‐of‐the‐art climate models following a wider range of experiment types and scenarios than previous CMIP phases. Here the main broad‐scale 21st century Antarctic projections provided by the CMIP6 models are shown across four forcing scenarios: SSP1‐2.6, SSP2‐4.5, SSP3‐7.0 and SSP5‐8.5. End‐of‐century Antarctic surface‐air temperature change across these scenarios (relative to 1995–2014) is 1.3, 2.5, 3.7 and 4.8°C. The corresponding proportional precipitation rate changes are 8, 16, 24 and 31%. In addition to these end‐of‐century changes, an assessment of scenario dependence of pathways of absolute and global‐relative 21st century projections is conducted. Potential differences in regional response are of particular relevance to coastal Antarctica, where, for example, ecosystems and ice shelves are highly sensitive to the timing of crossing of key thresholds in both atmospheric and oceanic conditions. Overall, it is found that the projected changes over coastal Antarctica do not scale linearly with global forcing. We identify two factors that appear to contribute: (a) a stronger global‐relative Southern Ocean warming in stabilisation (SSP2‐4.5) and aggressive mitigation (SSP1‐2.6) scenarios as the Southern Ocean continues to warm and (b) projected recovery of Southern Hemisphere stratospheric ozone and its effect on the mid‐latitude westerlies. The major implication is that over coastal Antarctica, the surface warming by 2100 is stronger relative to the global mean surface warming for the low forcing compared to high forcing future scenarios.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3Antarctic Treaty Consultative Meeting, Hobart, Australia, 2012-2012Antarctic Treaty Consultative Meeting XXXV, Hobart 2012, Agenda Item ATCM 14, CEP 5, 1-3; IP 45
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-26
    Description: Projections of the sea level contribution from the Greenland and Antarctic ice sheets (GrIS and AIS) rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous Coupled Model Intercomparison Project phase 5 (CMIP5) effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-21
    Description: Improving our understanding of the controls on Antarctic precipitation is critical for gaining insights into past and future polar and global environmental changes. Here we develop innovative water tracing diagnostics in the atmospheric general circulation model ECHAM6. These tracers provide new detailed information on moisture source locations and properties of Antarctic precipitation. In the preindustrial simulation, annual mean Antarctic precipitation originating from the open ocean has a source latitude range of 49–35◦ S, a source sea surface temperature range of 9.8– 16.3 ◦ C, a source 2 m relative humidity range of 75.6 %– 83.3%, and a source 10m wind velocity (vel10) range of 10.1 to 11.3ms−1. These results are consistent with estimates from existing literature. Central Antarctic precipitation is sourced from more equator-ward (distant) sources via elevated transport pathways compared to coastal Antarctic precipitation. This has been attributed to a moist isentropic framework; i.e. poleward vapour transport tends to follow constant equivalent potential temperature. However, we find notable deviations from this tendency especially in the lower troposphere, likely due to radiative cooling. Heavy precipitation is sourced by longer-range moisture transport: it comes from 2.9◦ (300 km, averaged over Antarctica) more equator-ward (distant) sources compared to the rest of precipitation. Precipitation during negative phases of the Southern Annular Mode (SAM) also comes from more equator-ward moisture sources (by 2.4◦, averaged over Antarctica) compared to precipitation during positive SAM phases, likely due to amplified planetary waves during negative SAM phases. Moreover, source vel10 of annual mean precipitation is on average 2.1 m s−1 higher than annual mean vel10 at moisture source locations from which the precipitation originates. This shows that the evaporation of moisture driving Antarctic precipitation occurs under windier conditions than average. We quantified this dynamic control of Southern Ocean surface wind on moisture availability for Antarctic precipitation. Overall, the innovative water tracing diagnostics enhance our under- standing of the controlling factors of Antarctic precipitation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...