GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-25
    Description: A workshop entitled “Tracking and understanding volcanic emissions through cross37 disciplinary integration: A textural working group.” was held at the Université Blaise Pascal (Clermont-Ferrand, France) on the 6-7th November 2012. This workshop was supported by the European Science Foundation (ESF). The main objective of the workshop was to establish an initial advisory group to begin to define measurements, methods, formats and standards to be applied in the integration of geophysical, physical and textural data collected during volcanic eruptions so as to homogenize procedures to be applied and integrated during both past and ongoing events. The working group comprised a total of 35 scientists from six countries (France, Italy, Great Britain, Germany, Switzerland and Iceland). The group comprised eleven advisors from the textural analysis field, eleven from deposit studies, seven geochemists and six geophysicists. The four main aims were to discuss and define: 1) Standards, precision and measurement protocols for textural analysis; 2) Identify textural, field deposit, chemistry and geophysical parameters that can best be measured and combined; 3) Agree on the best delivery formats so that data can be sheared between, and easily used by, each group; 4) Review multi-disciplinary sampling and measurement routines currently used, and measurement standards applied, by each community. The group agreed that community-wide cross-disciplinary integration, centered on defining those measurements and formats that can be best combined, is an attainable but key global focus. Consequently, we prepared a final document to be used as the foundation for a larger, international textural working group to serve as the basis of fully realizing such a pandisciplinary goal in volcanology. Thus, we here report our initial conclusions and recommendations.
    Description: Published
    Description: 49
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 392 (1998), S. 65-69 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The transition from a plinian (pumice) to an effusive (dome-forming) eruptive style is frequently observed in volcanic systems and is generally attributed to the progressive loss of volatiles from magma stored in a superficial reservoir. This explosive–effusive transition has been ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Landslides are common features in the vicinity of volcanic islands. In this contribution, we investigate landslides emplacement and dynamics around the volcanic island of Martinique based on the first scientific drilling of such deposits. The evolution of the active Montagne Pelée volcano on this island has been marked by three major flank-collapses that removed much of the western flank of the volcano. Subaerial collapse volumes vary from 2 to 25 km3 and debris avalanches flowed into the Grenada Basin. High-resolution seismic data (AGUADOMAR-1999, CARAVAL-2002, and GWADASEIS-2009) is combined with new drill cores that penetrate up to 430 m through the three submarine landslide deposits previously associated to the aerial flank-collapses (Site U1399, Site U1400, Site U1401, IODP Expedition 340, Joides Resolution, March–April 2012). This combined geophysical and core data provide an improved understanding of landslide processes offshore a volcanic island. The integrated analysis shows a large submarine landslide deposit, without debris avalanche deposits coming from the volcano, comprising up to 300 km3 of remobilized seafloor sediment that extends for 70 km away from the coast and covers an area of 2100 km2. Our new data suggest that the aerial debris avalanche deposit enter the sea but stop at the base of submarine flank. We propose a new model dealing with seafloor sediment failures and landslide propagation mechanisms, triggered by volcanic flank-collapse events affecting Montagne Pelée volcano. Newly recognized landslide deposits occur deeper in the stratigraphy, suggesting the recurrence of large-scale mass-wasting processes offshore the island and thus, the necessity to better assess the associated tsunami hazards in the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-01
    Description: A new geophysical data set off La Reunion Island (western Indian Ocean) reveals a large volcaniclastic submarine fan developing in an open-ocean setting. The fan is connected to a torrential river that floods during tropical cyclones. Sediment storage at the coast is limited, suggesting that the sediments are carried directly to the basin. The fan morphology and turbidites in cores lead us to classify it as a sand-rich system mainly fed by hyperpycnal flows. In the ancient geological record, there are many examples of thick volcaniclastic successions, but studies of modern analogues have emphasized mechanisms such as debris avalanches or direct pyroclastic flow into the sea. Because the Cilaos deep-sea fan is isolated from any continental source, it provides information on architecture and noncatastrophic processes in a volcaniclastic deep-sea fan.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...