GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: The R/V Oceanus, on Cruise 475, carried out the deployment of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Oceanus departed from Woods Hole, Massachusetts on September 22, 2011 and steamed south to the location of the mooring deployments on the shelf break. Over three days, September 23-25, Oceanus surveyed the bottom at the planned mooring sites, deployed the moorings, and carried out on site verification of the functioning of the moorings and moored hardware. Oceanus returned to Woods Hole on September 26, 2011.
    Description: Funding was provided by the National Science Foundation through the Consortium for Ocean Leadership
    Keywords: Oceanus (Ship : 1975-) Cruise OC475 ; Oceanographic buoys ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: A surface mooring was deployed in the eastern tropical Pacific west of northern Chile from the R/V Melville as part of the Eastern Pacific Investigation of Climate (EPIC). EPIC is a CLIVAR study with the goal of investigating links between sea surface temperature variability in the eastern tropical Pacific and climate over the American continents. Important to that goal is an understanding of the role of clouds in the eastern Pacific in modulating atmosphere-ocean coupling. The mooring was deployed near 20°S 85°W, at a location near the western edge of the stratocumulus cloud deck found west of Peru and Chile. This deployment started a three-year occupation of that site by a WHOI surface mooring in order to collect accurate time series of surface forcing and upper ocean variability. The surface mooring was deployed by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI). In collaboration with investigators from the University of Concepcion, Concepcion, Chile, an XBT section was made on the way out to the mooring from Arica, Chile, and an XBT and CTD section was made on the way into Arica. The buoy was equipped with meteorological instrumentation, including two Improved METeorological (IMET) systems. The mooring also carried Vector Measuring Current Meters, single-temperature recorders, and conductivity and temperature recorders located in the upper meters of the mooring line. In addition to the instrumentation noted above, a variety of other instruments, including an acoustic current meter, an acoustic doppler current profiler, a bio-optical instrument package, and an acoustic rain guage, were deployed. This report describes, in a general manner, the work that took place and the data collected during the Cook 2 cruise aboard the R/V Melville. The surface mooring deployed during this cruise will be recovered and re-deployed after approximately 12 months and again after 24 months, with a final recovery planned for 36 months after the first setting. Details of the mooring design and preliminary data from the XBT and CTD sections are included.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under grant number NA96GP0429.
    Keywords: Stratocumulus clouds ; Air-sea interaction ; Moored data ; Melville (Ship) Cruise Cook 2
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 6285190 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: During the summer of 2001, several moorings and cruises were used as part of the CBLAST-Low (Coupled Boundary Layer Air-Sea Transfer under low wind conditions) pilot experiment in the North Atlantic, south of Martha’s Vineyard Island, MA, USA. Six subsurface tide gauges were deployed around the study site for a period of approximately 3 months during the summer of 2001. Further, two surface buoys equipped with meteorological instrumentation and subsurface arrays that measured temperature, conductivity and velocity were deployed during the months of July and August 2001. For a short intensive operating period during July 2001, a newly manufactured three-dimensional mooring designed to sample three-dimensional properties of the upper ocean was deployed for a period of 6 days. During the Intensive Operating Period (IOP) along-shelf and across-shelf conductivity-temperature-depth (CTD) sections were completed as well as a drifting array designed to passively collect data from the upper water column released for approximately 24 hours. This report describes the instrumentation and type of moorings deployed by the Woods Hole Oceanographic Institution Upper Ocean Processes (WHOI UOP) group as well as data return and quality from the CBLAST-Low 2001 pilot study. This is summarized in graphical and tabular form in this report.
    Description: Funding provided by the Office of Naval Research under Contract No. N00014-01-1-0029 and from the Secretary of the Navy / CNO Chair Grant No. N00014-99-1-0090.
    Keywords: CBLAST-LOW ; Low wind ; Air-sea interaction ; Nobska (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 4718916 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: During the summer of 2002, six surface moorings and one subsurface mooring were deployed south of Martha's Vineyard, Cape Cod, Massachusetts. The moorings were deployed from June to September 2002 to collect meteorological and oceanographic data. This was done both to support the Coupled Boundary Layered Air-Sea Transfer Low wind (CBLAST-Low) cooperative experiment and to address the question of regional predictability in the littoral regime under research supported by a Secretary of the Navy/Chief of Naval Operations (CNO) Chair. The aim was to capture the mesoscale development and response of inner shelf waters to local synoptic atmospheric, tidal and larger scale oceanic forcing under predominantly low wind conditions. This report covers the operational aspects of the 2002 experiment, including deployment, recovery, and mooring setups, as well as basic data returns.
    Description: Funding was provided by the Office of Naval Research under Contract Numbers N00014-01-1-0029 and N00014-99-1-0090.
    Keywords: CBLAST-LOW ; Air-sea interaction ; Low wind ; Nobska (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 10648504 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: King Abdullah University of Science and Technology (KAUST) is being built near Thuwal, Saudi Arabia with the goal of becoming a world-class, graduate-level research university. As a step toward this goal, KAUST has partnered with the Woods Hole Oceanographic Institution (WHOI) to undertake various studies of the oceanography of the Red Sea in order to establish a research program in ocean sciences by the time the university opens its doors in the fall of 2009. Two of the KAUST-WHOI research projects involve deployment of surface moorings and associated instrumentation to measure physical properties of the Red Sea, such as temperature, salinity, and currents, at four locations off the coast of Saudi Arabia. The goal of these measurements is to better understand the evolution and dynamics of the circulation and air-sea interaction in the Red Sea. Two surface moorings and two bottom tripods (PI, Steven Lentz) were deployed at 50-55-m depth near 21°57'N, 38°46'E over the continental shelf close to the Saudi coast. An additional surface mooring/bottom tripod pair was deployed near 21°58'N, 38°50'E at the outer fringe of a reef system directly onshore of the shelf mooring/tripod pairs (PI, Lentz). The coastal moorings carry instruments to estimate temperature, salinity, and fluorescence; and the nearby bottom tripods support instruments to measure bottom pressure and the vertical profile of the currents. Additional instruments, principally bottom temperature sensors, were deployed over the reef system onshore of the shelf moorings. One air-sea interaction mooring (PI, J. Thomas Farrar) was deployed at 693-m depth near 22°10'N, 38°30'E. The air-sea interaction mooring carries instruments for measuring temperature, salinity, (water) velocity, winds, air temperature, humidity, barometric pressure, incident sunlight, infrared radiation, precipitation, and surface waves. A coastal meteorological tower was also installed on the KAUST campus in Thuwal (PI, Farrar). These measurements are of value because there are few time series of oceanographic and meteorological properties of the Red Sea that can be used to characterize the circulation, test numerical models of the Red Sea circulation, or formulate theoretical models of the physics of the Red Sea circulation. These measurements will permit a characterization of the Red Sea circulation with high temporal resolution at the mooring locations, and accurate in-situ estimates of the air-sea exchange of heat, freshwater, and momentum. In October 2008, a cruise was made aboard the R/V Oceanus to deploy the shelf and air-sea interaction moorings, and other fieldwork (e.g., tower instrumentation and deployment of reef instrumentation) was conducted after the cruise. Some additional data were collected during the cruise with shipboard instrumentation. This report documents the cruise and the data collected during the fall 2008 fieldwork.
    Description: Funding for this report was provided by the King Abdullah University of Science and Technology (KAUST) under a cooperative research agreement with Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20° S, 85° W under the stratus clouds west of northern Chile and Peru is being maintained to provide ongoing, climate-quality records of surface meteorology, of air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the December 2004 cruise of NOAA's R/V Ronald H. Brown to the ORS Stratus site, the primary activities where the recovery of the WHOI surface mooring that had been deployed in November 2003, the deployment of a new WHOI surface mooring at that site, the in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Environmental Technology Laboratory (ETL), and observations of the stratus clouds and lower atmosphere by NOAA ETL and Jason Tomlinson from Texas A&M. The ORS Stratus buoys are equipped with two Improved Meteorological systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. The IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ETL instrumentation used during the 2004 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. The atmospheric observations also benefited from the C-Band radar mounted on the R/V Ronald H. Brown. In addition to this work, buoy work was done in support of the Chilean Navy Hydrographic and Oceanographic Service (SHOA). A tsunami warning mooring was reinstalled at 75°W, 20°S for SHOA, after the previous buoy installed last year failed. SHOA personnel were onboard to direct the deployment and to gain experience. Four students from the University of Concepcion collected hydrographic data and water samples. One other Chilean student from the University of Chile was involved in the atmospheric sampling program, with a particular focus on the near coast jet. Finally, the cruise hosted a teacher participating in NOAA's Teacher at Sea Program, Mary Esther Cook, who used her experience to develop lessons for her class back in Arkansas.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Contract Number NA17RJ1225.
    Keywords: Air-sea fluxes ; Upper ocean variability ; Stratus clouds ; Ronald H. Brown (Ship) Cruise RB04-11
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 12795930 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. Deployment of the first (NTAS-1), second (NTAS-2) and third (NTAS-3) moorings were documented in previous reports (Plueddemann et al., 2001; 2002; 2003). This report documents recovery of the NTAS-3 mooring and deployment of the NTAS-4 mooring at the same site. Both moorings used 3-meter discus buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 150 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature and velocity. The mooring turnaround was done on the NOAA ship Ronald H. Brown, Cruise RB-04-01, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 12 and 25 February 2004. The NTAS-3 buoy was found adrift and recovered on 19 February at 14°53.7’N, 51°22.8’W. Deployment of the NTAS-4 mooring was on 21 February at approximately 14°44.4’N, 50°56.0’W in 5038 m of water. A 30-hour intercomparison period followed, after which dragging operations to recover the lower portion of the NTAS-3 mooring commenced. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 and the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Air-sea interaction ; Tropical Atlantic ; Moored instrumentation ; Ronald H. Brown (Ship) Cruise RB04-01
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 13351792 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a coordinated part of the HOT program and contribute to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. This report documents recovery of the WHOTS-1 mooring, deployed in August 2004 near 22.75°N, 158°W, and deployment of the WHOTS-2 mooring at the same site. Both moorings were outfitted with Air-Sea Interaction Meteorology (ASIMET) systems to measure, record, and transmit the surface meteorological variables necessary to compute air-sea fluxes of heat, moisture and momentum. In cooperation with R. Lukas of the University of Hawaii, the upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity. The WHOTS mooring turnaround was done on the Scripps Institution of Oceanography Ship Melville, Cruise TUIM-10MV. The cruise took place between 23 and 30 July 2005.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 and the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Air-sea interaction ; Tropical Atlantic ; Moored instrumentation ; Melville (Ship) Cruise TUIM-10MV
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 27669575 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing, climate-quality records of surface meteorology, of air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the October 2005 cruise of NOAA’s R/V Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the WHOI surface mooring that had been deployed in December 2004, deployment of a new WHOI surface mooring at that site, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Environmental Technology Laboratory (ETL), and observations of the stratus clouds and lower atmosphere by NOAA ETL. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. The IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ETL instrumentation used during the 2005 cruise included cloud radar, radiosonde ballons, and sensors for mean and turbulent surface meteorology. In addition, two technicians from the University of Concepcion collected water samples for chemical analysis. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 and the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: STRATUS ; Ocean ; Climate ; Ronald H. Brown (Ship) Cruise RB05-05
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 16849004 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: The Marine Light - Mixed Layer experiment took place in the sub-Arctic North Atlantic ocean, approximately 275 miles south of Reykjavik, Iceland. The field program included a central surface mooring to document the temporal evolution of physical, biological and optical properties. The surface mooring was deployed at approximately 59°N, 21°W on 29 April 1991 and recovered on 6 September 1991. The Upper Ocean Processes Group of the Woods Hole Oceanographic Institution was responsible for design, preparation, deployment, and recovery of the mooring. The Group's contrbution to the field measurements included four different types of sensors: a meteorological observation package on the surface buoy, a string of 15 temperature sensors along the mooring line, an acoustic Doppler current profiler, and four instruments for measuring mooring tension and accelerations. The observations obtained from the mooring are sufficient to describe the air-sea fluxes and the local physical response to surface forcing. The objective in the analysis phase will be to determine the factors controlling this physical response and to work towards an understanding of the links among physical, biological, and optical processes. This report describes the deployment and recovery of the mooring, the meteorological data, and the subsurface temperature and current data.
    Description: Funding was provided by the Office of Naval Research under Contract N00014-89-J-1683.
    Keywords: Air-sea interaction ; Upper ocean structure ; Re-stratification ; Endeavor (Ship: 1976-) Cruise EN224 ; Endeavor (Ship: 1976-) Cruise EN227
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 4078891 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...