GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Energy industries. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (346 pages)
    Edition: 1st ed.
    ISBN: 9780128226674
    Series Statement: Energy Services and Management Series
    DDC: 333.79
    Language: English
    Note: Front Cover -- Energy Services Fundamentals and Financing -- Copyright Page -- Contents -- List of Contributors -- 1 Energy services -- 1 Energy services: concepts, applications and historical background -- 1.1 Introduction -- 1.2 Energy and population growth -- 1.3 Energy saving in buildings -- 1.4 Energy use in agriculture -- 1.5 Renewable energy technologies -- 1.5.1 Solar energy -- 1.5.2 Efficient bioenergy use -- 1.5.2.1 Briquette processes -- 1.5.2.2 Improved cook stoves -- 1.5.2.3 Biogas technology -- 1.5.2.4 Improved forest and tree management -- 1.5.2.5 Gasification application -- 1.5.3 Combined heat and power -- 1.5.4 Hydrogen production -- 1.5.5 Hydropower generation -- 1.5.6 Wind energy -- 1.6 Energy and sustainable development -- 1.7 Global warming -- 1.8 Recommendations -- 1.9 Conclusion -- References -- 2 Energy financing schemas -- 2 The promotion of renewable energy communities in the European Union -- 2.1 Overview -- 2.2 The link between the provision of energy services and the increase of energy efficiency -- 2.3 The efficiency gains stemming from distributed generation of energy production -- 2.4 The concept of renewable energy community -- 2.5 The promotion of renewable energy communities in EU law -- 2.6 The promotion of renewable energy communities in the draft National Energy and Climate Plans -- 2.7 Conclusion -- References -- 3 Financial schemes for energy efficiency projects: lessons learnt from in-country demonstrations -- 3.1 Introduction -- 3.2 The proposed methodology -- 3.3 Innovative financing schemes -- 3.3.1 Crowdfunding -- 3.3.2 Energy performance contracting -- 3.3.3 Green bonds -- 3.3.4 Guarantee funds -- 3.3.5 Revolving funds -- 3.3.6 Soft loans -- 3.3.7 Third-party financing -- 3.4 Case study countries -- 3.4.1 Bulgaria -- 3.4.2 Greece -- 3.4.3 Lithuania -- 3.4.4 Spain -- 3.5 Key actors identification. , 3.6 Knowledge transfer -- 3.6.1 Peer-to-Peer learning -- 3.6.2 Capacity building activities -- 3.7 Conclusions -- References -- 3 Energy systems in buildings -- 4 Energy in buildings and districts -- 4.1 Introduction -- 4.2 Thermal comfort -- 4.3 User behavior -- 4.4 Weather conditions under climate change and growing urbanization -- 4.5 Envelope and materials -- 4.6 From passive to nearly zero-energy building design -- 4.7 Smart buildings and home automation -- 4.8 From smart buildings to smart districts and cities -- 4.9 Concluding discussion -- References -- 5 Renewable energy integration as an alternative to the traditional ground-source heat pump system -- Nomenclature -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Description of the proposed solution -- 5.2.2 Test procedure -- 5.3 Technical calculation -- 5.3.1 Thermal module -- 5.3.1.1 Geothermal energy -- 5.3.1.2 Thermal solar energy -- 5.3.2 Power module -- 5.3.2.1 Photovoltaic solar energy -- 5.3.2.2 Wind energy -- 5.3.3 Contribution of the suggested installation -- 5.4 Economic and environmental analysis -- 5.4.1 Economic analysis -- 5.4.2 Environmental evaluation -- 5.5 Discussion -- 5.5.1 Sensitivity analysis -- 5.5.1.1 Electricity price -- 5.5.1.2 Electric rate -- 5.5.1.3 CO2 emission factor -- 5.6 Conclusions -- Acknowledgments -- References -- 6 Energy-saving strategies on university campus buildings: Covenant University as case study -- 6.1 Introduction -- 6.1.1 Energy modeling software for buildings -- 6.1.2 Energy conservation measures in buildings -- 6.2 Materials and methods -- 6.2.1 Study location -- 6.2.2 Procedure for data collection -- 6.2.3 Instrumentation and procedure for data analysis -- 6.2.4 Economic analysis -- 6.2.5 Assessment of environmental impacts -- 6.3 Results and discussions -- 6.3.1 Result of energy audit in cafeterias1 and 2. , 6.3.2 Result of energy audit in Mechanical Engineering building -- 6.3.3 Result of energy audit in university library -- 6.3.4 Result of energy audit in health center -- 6.3.5 Result of energy audit in the students' halls of residence -- 6.3.6 Qualitative recommendation analysis -- 6.3.6.1 Replacement of lighting fixtures with light-emitting diode bulbs -- 6.3.6.2 Installation of solar panels on the roofs of selected buildings -- 6.4 Conclusion -- References -- 7 Energy conversion systems and Energy storage systems -- 7.1 Introduction -- 7.2 Energy systems in buildings -- 7.2.1 Energy generation systems -- 7.2.1.1 Combined heat and power system -- 7.2.1.2 Solar photovoltaic system -- 7.2.1.3 Solar thermal system -- 7.2.1.4 Organic Rankine cycle system -- 7.2.1.5 Geothermal system -- 7.2.1.6 Wind turbine system -- 7.2.2 Energy conversion systems -- 7.2.2.1 Heating systems -- 7.2.2.2 Cooling systems -- 7.2.2.3 Ventilation systems -- 7.2.3 Energy storage systems -- 7.2.3.1 Battery energy storage system -- 7.2.3.2 Thermal energy storage system -- 7.3 Conclusion -- References -- 8 Energy systems in buildings -- 8.1 Introduction -- 8.2 Energy-efficient building envelopes -- 8.2.1 Increasing thermal resistance of the building envelope -- 8.2.2 Climate-specific design of energy-efficient envelopes -- 8.3 Renewable energy sources for building energy application -- 8.3.1 Analyzing electrical/thermal loads of a building -- 8.3.2 Consideration of local codes and requirements for renewable energy systems -- 8.3.3 Solar energy systems -- 8.3.3.1 Solar water heating -- 8.3.3.1.1 Flat-plate collectors -- 8.3.3.1.2 Evacuated tube solar thermal collectors -- 8.3.3.1.3 Choice of solar thermal collectors -- 8.3.3.1.3.1 Cost -- 8.3.3.1.3.2 Performance -- 8.3.3.1.3.3 Installation -- 8.3.4 Building-integrated photovoltaic systems -- 8.4 Solar thermal energy storage. , 8.4.1 Types of thermal energy storage technologies -- 8.4.1.1 Sensible heat storage system -- 8.4.1.1.1 Sensible solid heat storage system -- 8.4.1.1.2 Sensible liquid heat storage system -- 8.4.1.2 Sensible cold storage system -- 8.4.1.3 Latent heat storage system -- 8.4.1.4 Thermochemical storage -- 8.5 Wind energy -- 8.5.1 Brief introduction -- 8.5.2 Wind resource assessment -- 8.5.3 Building-integrated/mounted wind turbine -- 8.5.3.1 Building-integrated wind turbines -- 8.5.3.2 Building-mounted wind turbines -- 8.5.3.3 Building-augmented wind turbines -- 8.5.4 Optimizing building-integrated/mounted wind turbine devices -- 8.5.5 Small/micro wind turbines for building application -- 8.6 Heat pumps -- 8.6.1 Air-source heat pumps -- 8.6.2 Ground-source heat pumps -- 8.6.3 Working principles of heat pumps -- 8.6.3.1 The heating cycle -- 8.6.3.2 The cooling cycle -- 8.6.3.3 The defrost cycle -- 8.6.4 Performance measures -- 8.7 Biomass -- 8.8 Summary -- References -- 4 Energy efficiency in industrial sector -- 9 Energy efficiency and renewable energy sources for industrial sector -- 9.1 Introduction -- 9.2 Global energy trends -- 9.3 Energy consumption and emissions in industry -- 9.3.1 General trends -- 9.3.2 Energy and carbon-intensive industrial sectors -- 9.4 Energy efficiency in industry for climate change mitigation -- 9.4.1 The need for innovation -- 9.5 Energy efficiency and renewable sources in industry -- 9.5.1 Bioenergy -- 9.5.2 Solar heat -- 9.6 Case study in Turkey -- 9.6.1 National Energy Efficiency Action Plan -- 9.6.2 General overview -- 9.6.3 Industry and technology -- 9.6.4 Aim of the development plans -- 9.7 Policy options -- 9.7.1 Lessons learned -- 9.7.2 International agreements -- 9.7.3 Procurement -- 9.8 Conclusions -- Acknowledgment -- References -- 10 Energy efficiency in tourism sector: eco-innovation measures and energy. , 10.1 Introduction -- 10.2 State of the arts -- 10.3 Methods and data -- 10.4 Results and discussion -- 10.5 Conclusions -- References -- 5 Energy services markets: development and status quo -- 11 Energy service markets: status quo and development -- 11.1 Introduction -- 11.2 The European framework for energy services -- 11.2.1 Legal framework -- 11.2.2 The European Union energy service markets: market volume, offers, and barriers -- 11.3 The German energy service market -- 11.3.1 Legal framework and information sources -- 11.3.2 Market overview -- 11.4 Developments of segments of the service market -- 11.4.1 Advice services -- 11.4.2 Energy management -- 11.4.3 Contracting -- 11.5 Market development -- 11.6 Conclusions: lessons learned from the German case -- References -- 12 Worldwide trends in energy market research -- 12.1 Introduction -- 12.2 Data -- 12.3 Results -- 12.3.1 Subjects from worldwide publications -- 12.3.2 Journals metric analysis -- 12.3.3 Countries, affiliations, and their main topics -- 12.3.4 Keywords from worldwide publications -- 12.3.5 Cluster analysis based on keywords -- References -- 13 Which aspects may prevent the development of energy service companies? The impact of barriers and country-specific condi... -- 13.1 Introduction -- 13.2 Which are the problems confronted by energy efficiency actions and policy instruments? -- 13.3 Which are the most relevant barriers confronted by energy service companies in different regions? -- 13.4 Removing barriers and promoting energy service companies -- 13.4.1 Actions to remove economic and market barriers -- 13.4.2 Actions to remove funding barriers -- 13.4.3 Enabling frameworks for energy service companies and other energy efficiency actions -- 13.5 Lessons learned and conclusions -- Acknowledgments -- References -- Further reading -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Renewable energy sources. ; Smart power grids. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (388 pages)
    Edition: 1st ed.
    ISBN: 9780443141553
    DDC: 333.794
    Language: English
    Note: Front Cover -- Sustainable Energy Planning in Smart Grids -- Copyright Page -- Contents -- List of contributors -- Preface -- Acknowledgments -- 1 Energy planning for a sustainable transition to a decarbonized generation scenario -- 1.1 Introduction -- 1.2 Energy planning of electrical energy system -- 1.2.1 Energy scenarios in China -- 1.2.2 Energy scenarios in the United States -- 1.2.3 Energy scenarios in the European Union -- 1.3 Renewable energy resources for decarbonized generation -- 1.3.1 Solar photovoltaic generation -- 1.3.1.1 Grid-connected photovoltaic systems -- 1.3.1.2 Off-grid (stand-alone) photovoltaic systems -- 1.3.1.3 Solar power's role in decarbonization -- 1.3.2 Wind turbines generation -- 1.3.3 Hybrid renewable systems generation -- 1.4 Distributed generation -- 1.4.1 Microgrid and nanogrid -- 1.4.2 Operation strategies of microgrid -- 1.4.3 Nanogrids and smart homes -- 1.4.4 Energy storages -- 1.4.5 A new version of energy source and storage-vehicle-to-grid -- 1.5 Conclusion -- References -- 2 Electrical consumption and renewable profile clusterization based on k-medoids method -- 2.1 Introduction -- 2.2 Methods to select representative days -- 2.2.1 State of the art -- 2.2.2 Representative days using the k-medoids method -- 2.2.3 Background -- 2.3 Results -- 2.4 Conclusions -- References -- 3 Mapping of building energy consumption and emissions under Representative Concentration Pathway scenarios by a geographic... -- 3.1 Introduction -- 3.2 Geographic information system -- 3.3 Geographic information system computational framework for application on Representative Concentration Pathway scenarios -- 3.3.1 Obtention of climate data considering Representative Concentration Pathway scenarios -- 3.3.2 Calculation of prospective for buildings based on Representative Concentration Pathway scenarios -- 3.3.2.1 OpenStudio. , 3.3.2.2 SketchUp -- 3.3.2.3 EnergyPlus -- 3.3.3 Statistical and cartographic data input -- 3.3.4 Data processing and rendering of maps -- 3.3.5 Post-processing and color patterns for visualization -- 3.4 Framework applied to the case study of Mexico -- 3.4.1 Description of the study zone -- 3.4.2 Cartographic databases -- 3.4.3 Prospective calculation based on Representative Concentration Pathway scenarios -- 3.4.3.1 Prospective energy consumption -- 3.4.3.2 Energy consumption in cooling and related polluting emissions -- 3.5 Results -- 3.6 Conclusions -- References -- 4 Energy sector and public lighting -- Nomenclature -- 4.1 Introduction -- 4.2 The socioeconomic position of Ecuador -- 4.3 The public lighting service in Ecuador -- 4.3.1 Brief history -- 4.3.2 The reform in the public lighting sector -- 4.3.2.1 Structure of public lighting service after the reforms -- 4.3.2.1.1 Ministry of Energy and Non-Renewable Natural Resources -- 4.3.2.1.2 Agency for Regulation and Control of Electricity -- 4.3.2.1.3 Public corporations for electrical power distribution and trading -- 4.3.2.1.4 Decentralized Autonomous Governments -- 4.3.2.1.5 Ecuadorian Institute of Normalization -- 4.3.3 Installed capacity -- 4.3.3.1 Average price of energy for public lighting -- 4.3.3.2 Consumption and billing -- 4.3.3.3 Lighting system costs -- 4.3.4 Public lighting service coverage -- 4.4 Ecuadorian policies of public lighting service -- 4.4.1 State policy -- 4.4.1.1 Policies referred to in law -- 4.4.1.2 Policies referred by the MERNNR -- 4.4.2 Environmental policies -- 4.4.3 Luminotechnics laboratories -- 4.5 Problems and challenges faced by the public lighting sector -- 4.6 Conclusion and policy implications -- References -- 5 Pumped hydro energy storage systems for a sustainable energy planning -- 5.1 Introduction -- 5.2 The pumping station as an energy storage system. , 5.2.1 Energy storage and integration of renewables -- 5.2.2 Comparison of various energy storage devices -- 5.2.3 Fundamentals of pumped hydro storage -- 5.2.3.1 Type of pumped hydro storage -- 5.2.3.1.1 Quaternary -- 5.3 Determination of sites for the implementation of a pumped hydro storage -- 5.3.1 Search using geographic information system systems -- 5.3.2 Technical considerations -- 5.3.3 Environmental considerations -- 5.3.4 Territorial considerations -- 5.3.5 Peculiar modalities -- 5.3.5.1 Pumped hydro storage using seawater -- 5.3.5.2 Underground pumped hydro storage -- 5.4 Environmental impact of a pumping station -- 5.4.1 Land-use change -- 5.4.2 Troglobionts adapted to caves -- 5.4.3 The creation of reservoirs and biodiversity -- 5.5 Particular cases in the Canary Islands -- 5.5.1 Gran Canaria Isle -- 5.5.2 Tenerife Isle -- 5.5.3 El Hierro Isle -- 5.5.4 La Gomera Isle -- 5.5.5 Lanzarote-Fuerteventura-La Graciosa electric system -- 5.6 Conclusions -- References -- 6 Renewable energy-driven heat pumps decarbonization potential in existing buildings -- Nomenclature -- 6.1 Introduction -- 6.1.1 Energy demand scenario -- 6.1.2 Energy consumption in buildings -- 6.1.3 Energy objectives in Europe -- 6.2 Methodology -- 6.2.1 Proposed heat pumps heating and cooling transition system -- 6.2.2 Proposed methodology and analysis -- 6.3 Scenario modeling and case study -- 6.3.1 Case study: Spain building heating and cooling systems electrification roadmap -- 6.3.2 Characterization and scenarios -- 6.3.3 Simulation for the 2030 and 2050 scenarios -- 6.4 Results and analysis -- 6.4.1 Analysis of different scenarios -- 6.4.2 Energy scenarios and emissions savings -- 6.4.3 Optimization proposals -- 6.4.4 Economic aspect -- 6.4.5 Proposed roadmap -- 6.5 Conclusions -- References. , 7 Households participation in energy communities with large integration of renewables -- 7.1 Introduction -- 7.2 Background on energy communities and renewables integration -- 7.3 Demand response in energy communities -- 7.3.1 Identification of demand response opportunities -- 7.3.2 Participants ranking -- 7.3.3 Participants' invitation to the demand response event -- 7.3.4 Real-time monitoring -- 7.4 Energy communities case study -- 7.4.1 End-user's participation in the demand response -- 7.4.1.1 Case study -- 7.4.1.2 Results -- 7.4.1.3 Discussion -- 7.4.2 IoT devices' participation in demand response models -- 7.4.2.1 Case study -- 7.4.2.2 Results -- 7.4.2.3 Discussion -- 7.5 Conclusions -- Funding -- References -- 8 Hybrid generation system based on nonconventional energy sources for artisanal fishing -- 8.1 Introduction -- 8.2 Colombian energy potential -- 8.2.1 Photovoltaic solar energy -- 8.2.2 Wind power -- 8.2.3 Energy of ocean currents -- 8.2.4 Ocean thermal energy conversion -- 8.2.5 Wave energy -- 8.2.6 Tidal energy -- 8.2.7 Salinity gradient energy -- 8.3 Methodology -- 8.3.1 Problem structuring -- 8.3.1.1 Main problem -- 8.3.1.2 Determination of criteria to be used in the model -- 8.3.1.3 Identify alternatives -- 8.3.2 Problem analysis -- 8.3.2.1 Evaluate alternatives -- 8.3.2.2 Select alternatives -- 8.4 Results and discussion -- 8.4.1 Energy demand baseline -- 8.4.2 Equipment selection -- 8.4.2.1 Electric propulsion system -- 8.4.2.2 Load profile and daily consumption of the vessel -- 8.4.2.3 Photovoltaic solar system -- 8.4.2.4 Diesel generation system -- 8.5 Conclusions -- References -- 9 Analysis and proposal of energy planning and renewable energy plans -- Nomenclature -- Formulae -- 9.1 Introduction -- 9.1.1 Background -- 9.1.2 Previous work -- 9.2 Data and methodology -- 9.2.1 EnergyPLAN model -- 9.2.2 Situation in South America. , 9.2.2.1 South America energy expectation -- 9.2.2.2 Incidence of renewable energies in South America -- 9.2.2.3 South America and predisposition for renewable energy -- 9.2.3 Ecuadorian energy context -- 9.2.3.1 History of net energy production -- 9.2.3.2 Energy production by generation source -- 9.2.3.3 History of total demand -- 9.2.3.4 International electricity transactions with Colombia and Peru -- 9.2.3.5 Energy efficiency strategies -- 9.2.4 Energy model with a vision to 2050 -- 9.2.4.1 Technical effects -- 9.2.4.2 Cost of energy -- 9.2.4.3 Human development index -- 9.3 Results and discussion -- 9.3.1 Economic analysis -- 9.3.2 Policies on Ecuadorian 100% renewable electricity generation system by 2050 -- 9.3.3 Discussion -- 9.4 Conclusions and recommendations -- 9.5 Expressions of gratitude -- References -- 10 Optimal siting and sizing of renewable energy-based distributed generation in distribution systems considering CO2 emissions -- Nomenclature -- Sets and indices -- Parameters -- Continuous variables -- Integer-valued continuous variables -- Binary-valued continuous variables -- Binary variables -- Integer variables -- 10.1 Introduction -- 10.1.1 Distributed generation -- 10.1.2 Energy storage units -- 10.1.3 Literature review on distribution system planning -- 10.1.4 Objectives and organization of the chapter -- 10.2 Uncertainty modeling -- 10.2.1 Uncertainty modeling in the distribution system planning problem -- 10.3 Mathematical modeling of the problem -- 10.3.1 Steady-state operation of radial electricity distribution networks -- 10.3.2 Linearization of the power flow equations -- 10.3.3 Operational limits of the electric energy distribution system -- 10.3.4 Operation model of renewable dispatchable DG units -- 10.3.5 Operation model of photovoltaic systems -- 10.3.6 Operation model of wind turbine systems. , 10.3.7 Operation of energy storage systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...