GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Publisher
Language
Years
  • 1
    Type of Medium: Book
    Pages: III, 34 S. , graph. Darst., Kt
    Series Statement: Special report 32
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Type of Medium: Book
    Pages: III, 13 S
    Series Statement: Special report 14
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-08
    Description: This article reports the results of a study of submarine groundwater discharge (SGD) to coastal waters of Majorca (NW Mediterranean). The overall aim is to evaluate the relevance of SGD of the island and chemically characterize the components that are supplied to the coastal waters through this pathway. Although other discharge areas are identified, we particularly focus on SGD in bays and areas of increased sea water residence time where effects of the discharges are expected to be most notable. Analysis at four selected embayments with different land-use characteristics indicated a link between human activities (mainly agriculture and urban) and compounds arriving to the coast. A pathway for these elements is the diffuse discharge along the shoreline, as suggested by the inverse relationship between salinity and nutrients in nearshore porewaters. A general survey was conducted at 46 sites around the island, and used dissolved radium as a qualitative indicator of SGD. Measurements of nutrients (P and N), pCO2 and TOC were performed to characterize the elements delivered to the coastal environment. Most nearshore samples showed 224Ra enrichment (mean ± SE, 7.0 ± 0.6 dpm 100 l−1) with respect to offshore waters (1.1 ± 0.2 dpm 100 l−1); however, 224Ra measurements along the coast were highly variable (1.0–38.1 dpm 100 l−1). Coastal samples with enhanced radium levels showed elevated pCO2 with respect to atmospheric concentrations, which together with high pCO2 in groundwater (〉5,000 ppm) indicates that SGD is an important vector of CO2 to coastal waters. Moreover, a relationship between 224Ra and phytoplankton biomass was established, suggesting an important impact of SGD on coastal productivity. The results presented here provide a first approximation of the SGD effect in the coastal waters of Majorca, and indicate that SGD could be an important source of nutrients and CO2 to the coast, strongly influencing the productivity and biogeochemical cycling of the coastal waters of Majorca.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-09
    Description: Seasonal (Spring and Summer 2002) concentrations of dissolved (〈0.22 μm) trace metals (Ag, Al, Co, Cu, Mn, Ni, Pb), inorganic nutrients (NO3, PO4, Si), and DOC were determined in groundwater samples from 5 wells aligned along a 30 m shore-normal transect in West Neck Bay, Long Island, NY. Results show that significant, systematic changes in groundwater trace metal and nutrient composition occur along the flowpath from land to sea. While conservative mixing between West Neck Bay water and the groundwaters explains the behavior of Si and DOC, non-conservative inputs for Co and Ni were observed (concentration increases of 10- and 2-fold, respectively) and removal of PO4 and NO3 (decreases to about half) along the transport pathway. Groundwater-associated chemical fluxes from the aquifer to the embayment calculated for constituents not exhibiting conservative behavior can vary by orders of magnitude depending on sampling location and season (e.g. Co, 3.4 × 102– 8.2 × 103 μmol d−1). Using measured values from different wells as being representative of the true groundwater endmember chemical composition also results in calculation of very different fluxes (e.g., Cu, 6.3 × 103 μmol d−1 (inland, freshwater well) vs. 2.1 × 105 μmol d−1(seaward well, S = 17 ppt)). This study suggests that seasonal variability and chemical changes occurring within the subterranean estuary must be taken into account when determining the groundwater flux of dissolved trace metals and nutrients to the coastal ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-12
    Description: There is increasing evidence that submarine groundwater discharge (SGD) in many areas represents a major source of dissolved chemical constituents to the coastal ocean. In Great South Bay, NY, previous studies have shown that the discharge of nutrients with SGD may cause harmful algal blooms. This study estimates SGD to Great South Bay during August 2006 by performing a mass balance for each of the dissolved Ra isotopes (224Ra, 223Ra, 228Ra, 226Ra). The budget indicates a major unknown source (between 30 and 60% of the total input) of Ra to the bay. This imbalance can be resolved by a flux of Ra-enriched groundwater on the order of 3.5–4.5 × 109 L d− 1, depending on the Ra isotope. The Ra-estimated SGD rates compare well with those previously estimated by models of flow that decreases exponentially away from shore. Compared to previous reports of fresh groundwater discharge to the bay, the Ra-estimated discharge must comprise approximately 90% recirculated seawater. The good agreement between Ra- and model-estimated flow rates indicates that the primary SGD endmember may be best sampled at shallow depths in the sediments a short distance bayward of the low tide line.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-12
    Description: The four naturally-occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) were used to estimate the submarine groundwater discharge (SGD) in the Isola La Cura marsh area in the northern Venice Lagoon (Italy). By determining the radium contributors to the study area (river, coastal ocean and sediments) the radium excess in the lagoon water was quantified through a mass balance model. This radium excess is attributed to a submarine groundwater discharge source and represents the most important input of radium. Possible endmembers were considered from analysis of groundwater samples (subtidal and marsh piezometers, marsh wells and seepage meters) that were enriched in Ra by one to two orders of magnitude relative to surface waters. In particular, a permeable layer at 80 cm depth in the surrounding marsh is considered to be representative of the most likely SGD source, although similar radium activities were measured in other subtidal porewater samples collected in the Isola La Cura area. The estimated SGD flux to the study area ranged from 1 · 109 to 6 · 109 L·d− 1, the same order of magnitude as the overall riverine input to the lagoon (3 · 109 L·d− 1). A major fraction of this SGD flux is likely recirculated seawater, as evidenced by the endmember salinity. The water residence time of 2 days was estimated by both using the shortest-lived radium isotope and estimating the volume of water exchanged between the lagoon and the open sea during a tidal cycle (tidal prism approach). This SGD flux could be used to estimate the input of other chemical species (metals, nutrients, etc.) via SGD which might affect the Venice Lagoon ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...