GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-24
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The reactivation of faults and possible impact on barrier integrity marks a critical aspect for investigations on subsurface usage capabilities. Glacial isostatic adjustments, originating from repeated Quaternary glaciations of northern Europe, cause tectonic stresses on pre‐existing fault systems and structural elements of the North German and Norwegian–Danish basins. Notably, our current understanding of the dynamics and scales of glacially induced fault reactivation is rather limited. A high‐resolution 2D seismic data set recently acquired offshore northeastern Langeland Island allows the investigation of a fault and graben system termed the Langeland Fault System. Seismo‐stratigraphic interpretation of reflection seismic data in combination with diffraction imaging unravels the spatial character of the Langeland Fault System along an elevated basement block of the Ringkøbing–Fyn High. In combination with sediment echosounder data, the data set helps to visualize the continuation of deep‐rooted faults up to the sea floor. Initial Mesozoic faulting occurred during the Triassic. Late Cretaceous inversion reactivated a basement fault flanking the southern border of the elevated basement block of the Ringkøbing–Fyn High while inversion is absent in the Langeland Fault System. Here, normal faulting occurred in the Maastrichtian–Danian. We show that a glacial or postglacial fault reactivation occurred within the Langeland Fault System, as evident by the propagation of the faults from the deeper subsurface up to the sea floor, dissecting glacial and postglacial successions. Our findings suggest that the Langeland Fault System was reactivated over a length scale of a minimum of 8.5 km. We discuss the causes for this Quaternary fault reactivations in the context of glacially induced faulting and the present‐day stress field. The combination of imaging techniques with different penetration depths and vertical resolution used in this study is rarely realized in the hinterland. It can therefore be speculated that many more inherited, deep‐rooted faults were reactivated in Pleistocene glaciated regions.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.1594/PANGAEA.954017
    Keywords: ddc:551.8 ; Langeland Fault System ; Quaternary ; fault reactivation ; seismo-stratigraphic interpretation
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: The understanding of the dynamics and scales of glacially induced faulting greatly benefits from an analyis using multiple geophysical datasets. By using a combination of high-resolution 2D seismic reflection data in combination with diffraction imaging, sediment echosounder data and shallow wells, we investigate a fault and graben system offshore Langeland Island in the Baltic Sea, which we term the Langeland Fault System. This approach allows to unravel the spatial character of the Langeland Fault System along an elevated basement block of the Ringkoebing-Fyn High. Our analysis shows the continuation of deep-rooted faults up to the seafloor. Imaging the shallowmost strata reveals Quaternary fault reactivation during glacial or postglacial times. This combination of imaging techniques is rarley realized in the onshore hinterland, thus, representing a unique analysis of Quaternary fault reactivation by combining onshore and offshore data and methods. Seismic data was acquired in September 2020 during a student field exercise cruise onboard R/V Alkor. The survey was organized by the University of Hamburg (Cruise AL545). Seismic data acquisition was carried out using a Mini-GI gun (true GI-mode with a 15 in³ generator and 30 in³ injector volume) and a 48-channel streamer with 4 m group spacing. The data have a dominant frequency of 250 Hz. Signal penetration is up to 1 s two-way travel time (TWT). The seismic processing routine included frequency filtering, amplitude recovery, noise reduction, surface-related multiple attenuation (SRME), Kirchhoff time migration. Innomars SES 2000 parametric sub-bottom profiler, which is hull-mounted on R/V Alkor, was used for the acquistion of the sediment echosounder data (Primary frequencies of about 100 kHz, secondary parametric frequency: 8 kHz). The diffraction imaging is based on separating the dominant reflected wavefield through a coherent summation scheme guided by a dip-based wavefront filter. In a next step, the reflection-only data is subtracted from the input data. The diffraction-only data is then focused using FD migration. By calculating the squared envelope of the focused diffractions, the diffraction energy stacks are obtained. The mapping procedure includes gridding using all available profiles in order to create time-structure maps by minimum curvature spline interpolation. Isochron maps (vertical thickness in two-way time) for the Triassic to Quaternary units were calculated by subtracting the top and bottom horizons of the specific units.
    Keywords: AL545; AL545_5-2_26; AL545_5-2_40; AL545_5-2_41; Alkor (1990); Baltic Sea; Binary Object; Binary Object (File Size); Diffraction imaging; Event label; File content; Glacially induced faults; GPF 19-1_80; Langeland; P26; P40; P41; reflection seismics; sediment echosounder; Seismic; Seismic reflection profile; SEISREFL; thickness maps; time-structure maps
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-19
    Description: 18.09.-28.09.2020, Kiel (Germany) – Kiel (Germany) Seeprak’20-UHH
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...