GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-19
    Description: The contribution of sea-state-induced processes to sea-level variability is investigated through ocean-wave coupled simulations. These experiments are performed with a high-resolution configuration of the Geestacht COAstal model SysTem (GCOAST), implemented in the Northeast Atlantic, the North Sea and the Baltic Sea which are considered as connected basins. The GCOAST system accounts for wave-ocean interactions and the ocean circulation relies on the NEMO (Nucleus for European Modelling of the Ocean) ocean model, while ocean-wave simulations are performed using the spectral wave model WAM. The objective is to demonstrate the contribution of wave-induced processes to sea level at different temporal and spatial scales of variability. When comparing the ocean-wave coupled experiment with in situ data, a significant reduction of the errors (up to 40% in the North Sea) is observed, compared with the reference. Spectral analysis shows that the reduction of the errors is mainly due to an improved representation of sea-level variability at temporal scales up to 12 h. Investigating the representation of sea-level extremes in the experiments, significant contributions (〉 20%) due to wave-induced processes are observed both over continental shelf areas and in the Atlantic, associated with different patterns of variability. Sensitivity experiments to the impact of the different wave-induced processes show a major impact of wave-modified surface stress over the shelf areas in the North Sea and in the Baltic Sea. In the Atlantic, the signature of wave-induced processes is driven by the interaction of wave-modified momentum flux and turbulent mixing, and it shows its impact to the occurrence of mesoscale features of the ocean circulation. Wave-induced energy fluxes also have a role (10%) in the modulation of surge at the shelf break.
    Keywords: ddc:551.46 ; Sea state ; Ocean-wave interactions ; Sea level ; Surge
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Modelling the drift of marine debris in quasi-real time can be of societal relevance. One pertinent example is Malaysia Airlines flight MH370. The aircraft is assumed to have crashed in the Indian Ocean, leaving floating wreckage to drift on the surface. Some of these items were recovered around the western Indian Ocean. We use ocean currents simulated by an operational ocean model in conjunction with surface Stokes drift to determine the possible paths taken by the debris. We consider: (1) How important is the influence of surface waves on the drift? (2) What are the relative benefits of forward- and backward-tracking in time? (3) Does including information from more items refine the most probable crash-site region? Our results highlight a critical contribution of Stokes drift and emphasise the need to know precisely the buoyancy characteristics of the items. The differences between the tracking approaches provide a measure of uncertainty which can be minimised by simulating a sufficiently large number of virtual debris. Given the uncertainties associated with the timings of the debris sightings, we show that at least 5 items are required to achieve an optimal most probable crash-site region. The results have implications for other drift simulation applications.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The air-sea gas transfer velocity (K-660) is typically assessed as a function of the 10-m neutral wind speed (U-10n), but there remains substantial uncertainty in this relationship. Here K-660 of CO2 derived with the eddy covariance (EC) technique from eight datasets (11 research cruises) are reevaluated with consistent consideration of solubility and Schmidt number and inclusion of the ocean cool skin effect. K-660 shows an approximately linear dependence with the friction velocity (u*) in moderate winds, with an overall relative standard deviation (relative standard error) of about 20% (7%). The largest relative uncertainty in K-660 occurs at low wind speeds, while the largest absolute uncertainty in K-660 occurs at high wind speeds. There is an apparent regional variation in the steepness of the K-660-u* relationships: North Atlantic 〉= Southern Ocean 〉 other regions (Arctic, Tropics). Accounting for sea state helps to collapse some of this regional variability in K-660 using the wave Reynolds number in very large seas and the mean squared slope of the waves in small to moderate seas. The grand average of EC-derived K-660 ( - 1.47 + 76.67 u * + 20.48 u *(2) o r 0.36 + 1.203 U-10n + 0.167 U (2)(10n) ) is similar at moderate to high winds to widely used dual tracer-based K-660 parametrization, but consistently exceeds the dual tracer estimate in low winds, possibly in part due to the chemical enhancement in air-sea CO2 exchange. Combining the grand average of EC-derived K-660 with the global distribution of wind speed yields a global average transfer velocity that is comparable with the global radiocarbon (C-14) disequilibrium, but is similar to 20% higher than what is implied by dual tracer parametrizations. This analysis suggests that CO2 fluxes computed using a U-10n (2) dependence with zero intercept (e.g., dual tracer) are likely underestimated at relatively low wind speeds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-17
    Description: We consider the effect of rain on wind wave generation and dissipation. Rain falling on a wavy surface may have a marked tendency to dampen the shorter waves in the tail of the spectrum, the related range increasing with the rain rate. Historical and sailors' reports suggest this leads to calmer wave conditions, certainly so for the action of breakers. We have explored this situation using a fully coupled meteorological-wave model system, adding an artificial rain rate dependent damping of the tail. Contrarily to direct marine experience, the experimental results show higher wind speeds and wave heights. A solid indication of the truth is achieved with the direct comparison between operational model (where rain effect is ignored) and measured data. These strongly support the sailors' claims of less severe wave conditions under heavy rain. This leads to a keen analysis of the overall process, in particular on the role of the tail of the spectrum in modulating the wind input and the white-capping, and how this is presently modeled in operational activity. We suggest that some revision is due and that the relationship between white-capping and generation by wind is deeper and more implicative than presently generally assumed. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-28
    Print ISSN: 0149-0419
    Electronic ISSN: 1521-060X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Published by Taylor & Francis
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2018. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 143 (2018): 1223, doi:10.1121/1.5025042.
    Description: The ocean acoustic noise floor (observed when the overhead wind is low, ships are distant, and marine life silent) has been measured on an array extending up 987 m from 5048 m depth in the eastern North Pacific, in what is one of only a few recent measurements of the vertical noise distribution near the seafloor in the deep ocean. The floor is roughly independent of depth for 1–6 Hz, and the slope (∼ f−7) is consistent with Longuet-Higgins radiation from oppositely-directed surface waves. Above 6 Hz, the acoustic floor increases with frequency due to distant shipping before falling as ∼ f−2 from 40 to 800 Hz. The noise floor just above the seafloor is only about 5 dB greater than during the 1975 CHURCH OPAL experiment (50–200 Hz), even though these measurements are not subject to the same bathymetric blockage. The floor increases up the array by roughly 15 dB for 40–500 Hz. Immediately above the seafloor, the acoustic energy is concentrated in a narrow, horizontal beam that narrows as f−1 and has a beam width at 75 Hz that is less than the array resolution. The power in the beam falls more steeply with frequency than the omnidirectional spectrum.
    Description: The OBSANP cruise was funded by the Office of Naval Research under Grant Nos. N00014-10-1-0987, N00014-14- 1-0324, N00014-10-1-0510, and N00014-10-1-0990.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1705-1716, doi:10.1175/JPO-D-15-0221.1.
    Description: A rapid and broadband (1 h, 1 〈 f 〈 400 Hz) increase in pressure and vertical velocity on the deep ocean floor was observed on seven instruments comprising a 20-km array in the northeastern subtropical Pacific. The authors associate the jump with the passage of a cold front and focus on the 4- and 400-Hz spectra. At every station, the time of the jump is consistent with the front coming from the northwest. The apparent rate of progress, 10–20 km h−1 (2.8–5.6 m s−1), agrees with meteorological observations. The acoustic radiation below the front is modeled as arising from a moving half-plane of uncorrelated acoustic dipoles. The half-plane is preceded by a 10-km transition zone, over which the radiator strength increases linearly from zero. With this model, the time derivative of the jump at a station yields a second and independent estimate of the front’s speed, 8.5 km h−1 (2.4 m s−1). For the 4-Hz spectra, the source physics is taken to be Longuet-Higgins radiation. Its strength depends on the quantity , where Fζ is the wave amplitude power spectrum and I the overlap integral. Thus, the 1-h time constant observed in the bottom data implies a similar time constant for the growth of the wave field quantity behind the front. The spectra at 400 Hz have a similar time constant, but the jump occurs 25 min later. The implications of this difference for the source physics are uncertain.
    Description: The OBSANP cruise was funded by the Office of Naval Research under Grants N00014-10-1-0987, N00014-14-1-0324, N00014-10-1-0510, and N00014-10-1-0990.
    Keywords: Atm/Ocean Structure/ Phenomena ; Atmosphere-ocean interaction ; Cold fronts ; Marine boundary layer ; Sea state
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Elementa Science of the Anthropocene 5 (2017): 47, doi:10.1525/elementa.233.
    Description: An array of novel directional wavebuoys was designed and deployed into the Beaufort Sea ice cover in March 2014, as part of the Office of Naval Research Marginal Ice Zone experiment. The buoys were designed to drift with the ice throughout the year and monitor the expected breakup and retreat of the ice cover, forced by waves travelling into the ice from open water. Buoys were deployed from fast-and-light air-supported ice camps, based out of Sachs Harbour on Canada’s Banks Island, and drifted westwards with the sea ice over the course of spring, summer and autumn, as the ice melted, broke up and finally re-froze. The buoys transmitted heave, roll and pitch timeseries at 1 Hz sample frequency over the course of up to eight months, surviving both convergent ice dynamics and significant waves-in-ice events. Twelve of the 19 buoys survived until their batteries were finally exhausted during freeze-up in late October/November. Ice impact was found to have contaminated a significant proportion of the Kalman-filter-derived heave records, and these bad records were removed with reference to raw x/y/z accelerations. The quality of magnetometer-derived buoy headings at the very high magnetic field inclinations close to the magnetic pole was found to be generally acceptable, except in the case of four buoys which had probably suffered rough handling during transport to the ice. In general, these new buoys performed as expected, though vigilance as to the veracity of the output is required.
    Description: The work formed part of the Office of Naval Research “Marginal Ice Zone” Departmental Research Initiative. Authors were supported by Grant Numbers N000141210130 (Wadhams and Doble), N000141210359 (Wilkinson, Maksym and Hwang).
    Keywords: Sea-ice ; Waves ; Arctic 
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 105 (2016): 1-12, doi:10.1016/j.ocemod.2016.02.009
    Description: The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.
    Description: This work was supported by the Office of Naval Research, Code 322, “Arctic and Global Prediction”, directed by Drs. Martin Jeffries and Scott Harper. (Grant numbers and Principal Investigators are: Ackley, N000141310435; Babanin, N000141310278; Doble, N000141310290; Fairall, N0001413IP20046; Gemmrich, N000141310280; Girard-Ardhuin and Ardhuin, N000141612376; Graber, N000141310288; Guest, N0001413WX20830; Holt, N0001413IP20050; Lehner, N000141310303; Maksym, N000141310446; Perrie, N00014-15-1-2611; Rogers, N0001413WX20825; Shen, N000141310294; Squire, N000141310279; Stammerjohn, N000141310434; Thomson, N000141310284; Wadhams, N000141310289.)
    Keywords: Sea ice ; Arctic Ocean ; Ocean surface waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...