GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Underwater acoustics. ; Seismic waves. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (283 pages)
    Edition: 1st ed.
    ISBN: 9781119750901
    Series Statement: Geophysical Monograph Series ; v.284
    DDC: 551.4654
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 An Introduction to the Ocean Soundscape -- 1.1 Introduction -- 1.2 Seismic Waves -- 1.2.1 Body Waves -- 1.2.2 Surface Waves -- 1.3 Noise Sources in the Oceans -- 1.3.1 Noise from Geological Origins (Geophony) -- 1.3.2 Noise from Biological Origins (Biophony) -- 1.3.3 Noise from Anthropogenic Origins (Anthrophony) -- 1.4 Tools for Recording Marine Noise -- 1.4.1 Ocean-Bottom Seismometers -- 1.4.2 Ocean-Bottom Nodes -- 1.4.3 Ocean-Bottom Observatories -- 1.4.4 Acoustic Doppler Current Profilers -- 1.4.5 Echosounders -- 1.4.6 Drifters and Floats -- 1.5 Common Data-Processing Methods -- 1.5.1 Time-Drift Correction -- 1.5.2 Data Reduction -- 1.5.3 Instrument Relocation through Travel-Time Analysis -- 1.5.4 Rotation for Geophone Reorientation -- 1.5.5 Converting from Counts to Physical Units -- 1.5.6 Removing the Mean from the Data Set -- 1.5.7 Frequency Spectrum, Spectrogram, and Power Spectral Density -- 1.5.8 Frequency Filtering -- 1.5.9 Polarization Analysis -- 1.6 Summary of Chapters -- 1.7 Future Developments of Acoustic Measurements in the Ocean -- References -- Chapter 2 Seismic Ambient Noise: Application to Taiwanese Data -- 2.1 Introduction -- 2.2 Background Ambient Seismic Noise in Taiwan -- 2.3 Ambient Seismic Noise Generated by Intense Storms -- 2.4 Deepsea Internal Waves Southeast of Offshore Taiwan -- 2.5 Gas Emissions at the Seafloor and "Bubble" SDEs in SW Offshore Taiwan -- 2.6 Conclusion -- Acknowledgments -- References -- Chapter 3 Seasonal and Geographical Variations in the Quantified Relationship Between Significant Wave Heights and Microseisms: An Example From Taiwan -- 3.1 Introduction -- 3.2 Method and Data Processing -- 3.2.1 Data -- 3.2.2 Method -- 3.3 Testing and Determining Parameters -- 3.4 Results and Discussion. , 3.4.1 Seasonal Variation -- 3.4.2 Geographical Variation -- 3.4.3 Residual Distributions of the SHW Simulation -- 3.5 Conclusions -- Acknowledgments -- References -- Chapter 4 Listening for Diverse Signals From Emergent and Submarine Volcanoes -- 4.1 Introduction -- 4.2 Detection and Monitoring of Submarine Volcanism -- 4.2.1 Hydroacoustic Arrays -- 4.2.2 Seismometer Arrays -- 4.2.3 Cabled Systems -- 4.2.4 Limitations in Detecting Submarine Volcanism -- 4.3 Diverse Volcano Signals Recorded Underwater -- 4.3.1 Distinguishing Signal from Noise in the Ocean -- 4.3.2 High-Frequency Volcanic Signals -- 4.3.3 Low-Frequency Volcanic Signals -- 4.3.4 Volcanic Tremor Signals -- 4.3.5 Volcanic Explosion-Type Signals -- 4.3.6 Volcanic Landslide Signals -- 4.4 Conclusions -- Availability Statement -- Acknowledgments -- References -- Chapter 5 Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities -- 5.1 Introduction -- 5.1.1 Recent Advances in Direct Monitoring of Submarine Landslides -- 5.1.2 Aims -- 5.2 Passive Geophysical Monitoring of Terrestrial Landslides -- 5.3 Which Aspects of Submarine Landslides Should We Be Able to Detect with Passive Systems? -- 5.4 Recent Advances and Opportunities in Passive Monitoring of Submarine Landslides -- 5.4.1 Determining the Timing and Location of Submarine Landslides at a Margin Scale Using Land-Based Seismological Networks -- 5.4.2 Quantifying Landslide Kinematics Using Hydrophones -- 5.4.3 Characterizing Landslide Run-Out to Enhance Hazard Assessments -- 5.4.4 Opportunities Using Distributed Cable-Based Sensing -- 5.5 The Application of Passive Geophysical Monitoring in Advancing Submarine Landslide Science. , 5.5.1 Can Passive Seismic and Acoustic Techniques Overcome the Logistical Challenges That Have Previously Hindered the Monitoring of Submarine Landslides? -- 5.5.2 What Aspects of Submarine Landslides Can We Assess from Passive Remote Sensing Techniques, and What Needs To Be Resolved? -- 5.5.3 Suggestions for Future Directions -- 5.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Iceberg Noise -- 6.1 Introduction -- 6.2 Waveforms of Iceberg Noise -- 6.2.1 Iceberg Bursts -- 6.2.2 Iceberg Tremor -- 6.2.3 Iceberg Harmonic Tremor -- 6.3 Observation and Location of Iceberg Noise -- 6.3.1 Hydroacoustic Records at Long Distances -- 6.3.2 Records of Regional Hydroacoustic Networks -- 6.3.3 Seismic Records in Antarctica -- 6.4 Spatial and Temporal Variations of Iceberg Noise -- 6.5 Source Mechanisms of Iceberg Noise -- 6.6 Discussion -- 6.7 Conclusion -- Acknowledgments -- References -- Chapter 7 The Sound of Hydrothermal Vents -- 7.1 Introduction -- 7.2 Theory of Sound Production by Hydrothermal Vents -- 7.2.1 Radiation Efficiency -- 7.2.2 Monopole -- 7.2.3 Dipole -- 7.2.4 Quadrupole -- 7.2.5 Estimated Source Sound Pressure Levels -- 7.2.6 Estimated Source Spectra -- 7.3 Survey of Acoustic Measurements -- 7.3.1 Very Low Frequency (< -- 10 Hz) -- 7.3.2 Narrowband -- 7.3.3 Broadband -- 7.3.4 Tidal Variability -- 7.3.5 Summary of Acoustic Measurements -- 7.4 Other Sources of Ambient Noise -- 7.4.1 Microseisms -- 7.4.2 Local and Teleseismic Events -- 7.4.3 Biological Sources -- 7.4.4 Anthropogenic Sources -- 7.5 Measurement and Analysis Considerations -- 7.5.1 Flow Noise and Coupled Vibration -- 7.5.2 Sound Speed in Hydrothermal Fluid -- 7.5.3 Near Field vs Far Field -- 7.5.4 Hydrophone Array Measurements -- 7.6 Conclusion -- Nomenclature -- References -- Chapter 8 Atypical Signals: Characteristics and Sources of Short-Duration Events. , 8.1 Introduction -- 8.2 Signal Characteristics -- 8.3 Worldwide Distribution of SDEs -- 8.4 Observations and Studies Advancing SDE Understanding -- 8.4.1 Observations from Different Types of Ocean Bottom Instruments -- 8.4.2 Continuous Long-Term, Multidisciplinary Monitoring of Gas Emissions -- 8.4.3 Correlation with Acoustic Monitoring of Gas Emissions -- 8.4.4 Correlation with Earthquakes -- 8.4.5 Correlation with Tides -- 8.4.6 Controlled in situ and Laboratory Experiments -- 8.5 Discussion of SDE Potential Sources -- 8.5.1 Biological Origin -- 8.5.2 Action of Ocean/Sea Currents -- 8.5.3 Fluids in Near-Surface Sediments -- 8.5.4 Low-Magnitude Seismicity -- 8.5.5 Source Modeling -- 8.6 Conclusion -- Acknowledgments -- References -- Chapter 9 Short-Duration Events Associated With Active Seabed Methane Venting: Scanner Pockmark, North Sea -- 9.1 Introduction -- 9.2 Scanner Pockmark Complex -- 9.3 CHIMNEY Seismic Experiment -- 9.4 Methods -- 9.5 Results -- 9.6 Discussion -- 9.6.1 Characteristics of SDEs -- 9.6.2 Spatial Distribution of SDEs -- 9.6.3 Negative Correlation with the Tide -- 9.6.4 Efficiency of SDE Detection -- 9.7 Conclusion -- Acknowledgments -- References -- Chapter 10 Ambient Bubble Acoustics: Seep, Rain, and Wave Noise -- 10.1 Introduction -- 10.2 Bubbles as Acoustic Sources -- 10.2.1 The Injection of a Gas Bubble -- 10.2.2 Bubbles as Simple Harmonic Oscillators -- 10.2.3 Minnaert Frequency -- 10.3 Subsurface Gas Release -- 10.3.1 Gas-Seep Acoustics -- 10.4 Rainfall Acoustics -- 10.5 Acoustics of Breaking Waves -- 10.6 Conclusion -- Further Reading -- Appendix -- Symbology -- References -- Chapter 11 Baleen Whale Vocalizations -- 11.1 Introduction -- 11.1.1 Marine Mammal Classification -- 11.2 Physical Description of Sound and Its Conventions -- 11.2.1 Sound Pressure Level (SPL) -- 11.2.2 Source Level (SL). , 11.2.3 Whale-Sound Analysis -- 11.3 Marine Mammal Vocalizations -- 11.3.1 Sirenia and Carnivora -- 11.3.2 Toothed Whales -- 11.3.3 Baleen Whales -- 11.4 Conclusions -- Acknowledgments -- References -- Chapter 12 Tracking and Monitoring Fin Whales Offshore Northwest Spain Using Passive Acoustic Methods -- 12.1 Introduction -- 12.1.1 Passive Acoustic Monitoring -- 12.1.2 Fin Whale Vocalizations -- 12.1.3 Data Available for This Study -- 12.2 Methods -- 12.2.1 Call Detection -- 12.2.2 Delay Estimation -- 12.2.3 Localization and Tracking -- 12.2.4 Kalman Filter -- 12.3 Results -- 12.3.1 Detections -- 12.3.2 Localization -- 12.3.3 Tracking -- 12.4 Discussion -- 12.5 Conclusions -- Acknowledgments -- References -- Chapter 13 Noise From Marine Traffic -- 13.1 Introduction -- 13.2 Underwater Radiated Noise -- 13.2.1 Sources of Shipping Noise -- 13.2.2 Measuring Radiated Noise -- 13.2.3 Modeling Underwater Radiated Noise -- 13.3 Noise Mapping -- 13.3.1 Modeling Shipping Contributions -- 13.3.2 Source Properties -- 13.3.3 Acoustic Propagation -- 13.3.4 Noise-Mapping Applications -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Tracking Multiple Underwater Vessels With Passive Sonar Using Beamforming and a Trajectory PHD Filter -- 14.1 Introduction -- 14.2 Narrow-Band Signal Model -- 14.3 Detection via Beamforming and CA-CFAR -- 14.3.1 CBF -- 14.3.2 CA-CFAR -- 14.4 Trajectory PHD Filter for Multiple Underwater Vessels -- 14.4.1 System Model -- 14.4.2 TPHD Filter -- 14.5 Experiments -- 14.5.1 Testing Using Numerical Simulations -- 14.5.2 Testing Using Real-World Experimental Data -- 14.6 Conclusions -- References -- Chapter 15 Deciphering the Submarine Soundscape: New Insights, Broader Implications, Future Directions -- 15.1 Introduction -- 15.2 What WAS Not Included -- 15.3 Further Information -- 15.4 Broader Context. , 15.5 Future Impact and Implications.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Serpentinized and metasomatized peridotites intruded by gabbros and dolerites have been drilled on the southern wall of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) during International Ocean Discovery Program (IODP) Expedition 357. They occur in seven holes from five sites making up an east-west trending, spreading-parallel profile that crosscuts this exhumed detachment footwall. Here we have taken advantage of this sampling to study heterogeneities of alteration at scales less than a kilometer. We combine textural and mineralogical observations made on 77 samples with in situ major and trace element analyses in primary and serpentine minerals to provide a conceptual model for the development of alteration heterogeneities at the Atlantis Massif. Textural sequences and mineralogical assemblages reveal a transition between an initial pervasive phase of serpentinization and subsequent serpentinization and metasomatism focused along localized pathways preferentially used by hydrothermal fluids. We propose that these localized pathways are interconnected and form 100 m- to 1 km-sized cells in the detachment footwall. This change in fluid pathway distribution is accompanied by variable trace element enrichments in the serpentine textures: deep, syn-serpentinization fluid-peridotite interactions are considered the source of Cu, Zn, As, and Sb enrichments, whereas U and Sr enrichments are interpreted as markers of later, shallower fluid-serpentinized peridotite interaction. Alteration of gabbros and dolerites emplaced in the peridotite at different lithospheric levels leads to the development of amphibole, chlorite and, or, talc-bearing textures as well as enrichments in LREE, Nb, Y, Th, Ta in the serpentine textures of the surrounding peridotites. Combining these observations, we propose a model that places the drill holes in a conceptual frame involving mafic intrusions in the peridotites and heterogeneities during progressive alteration and emplacement on the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Highlights • Seabed rock drills and real-time fluid monitoring for first time in ocean drilling • First time recovery of continuous sequences along oceanic detachment fault zone • Highly heterogeneous rock type and alteration in shallow detachment fault zone • High methane and hydrogen concentrations in Atlantis Massif shallow basement • Oceanic serpentinites potentially provide important niches for microbial life Abstract IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30°N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west–east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-05
    Description: Highlights • We image the deep structure of the Lesser Antilles Subduction Zone by MCS profiles. • The complex deformation of the outer forearc crust is induced by subducting ridges. • We discuss also the effect of the subducting compressive NAM–SAM Plate-boundary. • Along-strike variations of the seaward edge of the outer forearc crust are discovered. • The updip limit proxy of the seismogenic part reaches 20 km trenchwards than believed. Abstract We present the results from a new grid of deep penetration multichannel seismic (MCS) profiles over the 280-km-long north-central segment of the Lesser Antilles subduction zone. The 14 dip-lines and 7 strike-lines image the topographical variations of (i) the subduction interplate décollement, (ii) the top of the arcward subducting Atlantic oceanic crust (TOC) under the huge accretionary wedge up to 7 km thick, and (iii) the trenchward dipping basement of the deeply buried forearc backstop of the Caribbean upper plate. The four northernmost long dip-lines of this new MCS grid reveal several-kilometre-high topographic variations of the TOC beneath the accretionary wedge offshore Guadeloupe and Antigua islands. They are located in the prolongation of those mapped on the Atlantic seafloor entering subduction, such as the Barracuda Ridge. This MCS grid also provides evidences on unexpected huge along-strike topographical variation of the backstop basement and of the deformation style affecting the outer forearc crust and sediments. Their mapping clearly indicates two principal areas of active deformation in the prolongation of the major Barracuda and Tiburon ridges and also other forearc basement highs that correspond to the prolongation of smaller oceanic basement highs recently mapped on the Atlantic seafloor. Although different in detail, the two main deforming forearc domains share similarities in style. The imaged deformation of the sedimentary stratification reveals a time- and space-dependent faulting by successive warping and unwarping, which deformation can be readily attributed to the forearc backstop sweeping over the two obliquely-oriented elongated and localized topographical ridges. The induced faulting producing vertical scarps in this transport does not require a regional arc-parallel extensional regime as proposed for the inner forearc domain, and may support a partitioned tectonic deformation such as in the case of an outer forearc sliver. A contrasted reflectivity of the sedimentary layering at the transition between the outer forearc and accretionary domains was resolved and used to define the seaward edge of the outer forearc basement interpreted as being possibly a proxy to the updip limit of the interplate seismogenic zone. Its mapping documents along-arc variations of some tens of kilometres of the subduction backstop with respect to the negative gravity anomaly commonly taken as marking the subduction trench. With the exception of the southernmost part, the newly mapped updip limit reaches 25 km closer to the trench, thus indicating a possible wider seismogenic zone over almost the whole length of the study area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Talk] In: EGU General Assembly 2016, 17.-22.04.2016, Vienna, Austria .
    Publication Date: 2018-05-09
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Full waveform inversion (FWI) is a data-fitting technique capable of generating high-resolution velocity models with a resolution down to half the seismic wavelength. FWI is applied typically to densely sampled seismic data. In this study, we applied FWI to 3D wide-angle seismic data acquired using sparsely spaced ocean bottom seismometers (OBSs) from the Deep Galicia Margin west of Iberia. Our dataset samples the S-reflector, a low-angle detachment present in this area. Here we highlight differences between 2D, 2.5D and 3D-FWI performances using a real sparsely spaced dataset. We performed 3D FWI in the time domain and compared the results with 2D and 2.5D FWI results from a profile through the 3D model. When overlaid on multichannel seismic images, the 3D FWI results constrain better the complex faulting within the pre- and syn-rift sediments and crystalline crust compared to the 2D result. Furthermore, we estimate variable serpentinisation of the upper mantle below the S-reflector along the profile using 3D FWI, reaching a maximum of 45 per cent. Differences in the data residuals of the 2D, 2.5D and 3D inversions suggest that 2D inversion can be prone to overfitting when using a sparse dataset. To validate our results, we performed tests to recover the anomalies introduced by the inversions in the final models using synthetic datasets. Based on our comparison of the velocity models, we conclude that the use of 3D data can partially mitigate the problem of receiver sparsity in FWI.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Fluid-escape structures within sedimentary basins permit pressure-driven focused fluid flow through inter-connected faults, fractures and sediment. Seismically-imaged chimneys are recognised as fluid migration pathways which cross-cut overburden stratigraphy, hydraulically connecting deeper strata with the seafloor. However, the geological processes in the sedimentary overburden which control the mechanisms of genesis and temporal evolution require improved understanding. We integrate high resolution 2D and 3D seismic reflection data with sediment core data to characterise a natural, active site of seafloor methane venting in the UK North Sea and Witch Ground Basin, the Scanner pockmark complex. A regional assessment of shallow gas distribution presents direct evidence of active and palaeo-fluid migration pathways which terminate at the seabed pockmarks. We show that these pockmarks are fed from a methane gas reservoir located at 70 metres below the seafloor. We find that the shallow reservoir is a glacial outwash fan, that is laterally sealed by glacial tunnel valleys. Overpressure generation leading to chimney and pockmark genesis is directly controlled by the shallow geological and glaciogenic setting. Once formed, pockmarks act as drainage cells for the underlying gas accumulations. Fluid flow occurs through gas chimneys, comprised of a sub-vertical gas-filled fracture zone. Our findings provide an improved understanding of focused fluid flow and pockmark formation within the sediment overburden, which can be applied to subsurface geohazard assessment and geological storage of CO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: High-resolution velocity models developed using full-waveform inversion (FWI) can image fine details of the nature and structure of the subsurface. Using a 3D FWI velocity model of hyper-thinned crust at the Deep Galicia Margin (DGM) west of Iberia, we constrain the nature of the crust at this margin by comparing its velocity structure with those in other similar tectonic settings. Velocities representative of both the upper and lower continental crust are present, but there is no clear evidence for distinct upper and lower crustal layers within the hyper-thinned crust. Our velocity model supports exhumation of the lower crust under the footwalls of fault blocks to accommodate the extension. We used our model to generate a serpentinization map for the uppermost mantle at the DGM, at a depth of 100 ms (∼340 m) below the S-reflector, a low-angle detachment that marks the base of the crust at this margin. We find a good alignment between serpentinized areas and the overlying major block bounding faults on our map, suggesting that those faults played an important role in transporting water to the upper mantle. Further, we observe a weak correlation between fault heaves and serpentinization beneath the hanging-wall blocks, indicating that serpentinization was controlled by complex faulting during rifting. A good match between topographic highs of the S and local highly serpentinized areas of the mantle suggests that the morphology of the S was affected by the volume-increasing process of serpentinization and deformation of the overlying crust. Key Points Exhumation of the lower crust under the footwall of the normal faults to accommodate extension Overlying faults in the crust control water transport to the mantle Topography of the S-reflector is affected by the serpentinization process and deformations of the overlying crust
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...