GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The chemical structures of the glucans, galactoglucomannans and galactomannoglucans of two species of the Cladonia, section Cocciferae, Cladonia miniata and Cladonia salmonea, were determined and compared. α-D-Glucans of the nigeran type were isolated from both species, in common with all Cladonia spp., along with galactoglucomannans containing (1→6)-linked main-chains of α-D-Manp units substituted by structurally different and typical side-chains. Isolated were previously unreported galactomannoglucans, with (1→3)-linked main-chains of β-D-Glcp units, substituted at O-2,6 by side-chains. These consisted of β-D-Galf, 6-O-substituted β-D-Galf and 2-O-, 4-O-, 6-O- and 2,3-di-O-substituted α-D-Manp units. According to 13C NMR spectroscopy, a similar galactomannoglucan was isolated from the Cladonia spp. Cladonia signata, Cladonia crispatula, Cladonia penicillata, Cladonia imperialis, Cladonia clathrata, Cladonia connexa, Cladonia substellata and Cladonia ibitipocae. Its presence could also contribute to the classic taxonomy of lichenized fungi.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: β-D-Glucans of the laminaran type were prepared from 15 Cladonia spp., Cladonia bellidiflora, Cladonia boryi, Cladonia clathrata, Cladonia connexa, Cladonia crispatula, Cladonia furcata, Cladonia gracilis, Cladonia ibitipocae, Cladonia imperialis, Cladonia miniata, Cladonia penicillata, Cladonia salmonea, Cladonia signata, Cladonia substellata and Cladonia uncialis. They were extracted with 10% aqueous KOH at 100°C, giving polysaccharides with varying yields and proportions of mannose, galactose and glucose. Their aqueous solutions were freeze–thawed giving precipitates of mixed α-glucan (nigeran) and β-glucans, which were isolated and suspended in aqueous 0.5% KOH at 50°C, which preferentially dissolved the β-glucan. In the case of the C. uncialis product, it was subjected to methylation analysis, which gave rise to 2,4,6-tri-O-methylglucitol acetate only, corresponding to (1→3)-linkages. Its specific rotation (+4°) and one- and two-dimensional nuclear magnetic resonance (NMR) spectra were consistent with β-linkages. 13C and 1H-1 signals were observed, respectively, at δ 102.8 (C-1), 86.0 (C-3), 76.2 (C-5), 72.6 (C-2), 68.3 (C-4) and 60.7 (C-6), and 4.55 (H-1), 3.31 (H-2), 3.49 (H-3), 3.27 (H-4), 3.27 (H-5), 3.48 (H-6) and 3.72 (H-6′). Similar 13C-NMR spectra were obtained from the glucans from the other 14 Cladonia spp. The β-D-glucans of the laminaran type seems to be present in all Cladonia spp. being significant for chemotyping since it was observed in every species studied.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-23
    Description: Antarctic sea ice prediction has garnered increasing attention in recent years, particularly in the context of the recent record lows of February 2022 and 2023. As Antarctica becomes a climate change hotspot, as polar tourism booms, and as scientific expeditions continue to explore this remote continent, the capacity to anticipate sea ice conditions weeks to months in advance is in increasing demand. Spurred by recent studies that uncovered physical mechanisms of Antarctic sea ice predictability and by the intriguing large variations of the observed sea ice extent in recent years, the Sea Ice Prediction Network South (SIPN South) project was initiated in 2017, building upon the Arctic Sea Ice Prediction Network. The SIPN South project annually coordinates spring-to-summer predictions of Antarctic sea ice conditions, to allow robust evaluation and intercomparison, and to guide future development in polar prediction systems. In this paper, we present and discuss the initial SIPN South results collected over six summer seasons (December-February 2017-2018 to 2022-2023). We use data from 22 unique contributors spanning five continents that have together delivered more than 3000 individual forecasts of sea ice area and concentration. The SIPN South median forecast of the circumpolar sea ice area captures the sign of the recent negative anomalies, and the verifying observations are systematically included in the 10-90% range of the forecast distribution. These statements also hold at the regional level except in the Ross Sea where the systematic biases and the ensemble spread are the largest. A notable finding is that the group forecast, constructed by aggregating the data provided by each contributor, outperforms most of the individual forecasts, both at the circumpolar and regional levels. This indicates the value of combining predictions to average out model-specific errors. Finally, we find that dynamical model predictions (i.e., based on process-based general circulation models) generally perform worse than statistical model predictions (i.e., data-driven empirical models including machine learning) in representing the regional variability of sea ice concentration in summer. SIPN South is a collaborative community project that is hosted on a shared public repository. The forecast and verification data used in SIPN South are publicly available in near-real time for further use by the polar research community, and eventually, policymakers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publication Date: 2024-05-29
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...