GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barker, A K; Coogan, Laurence A; Gillis, Kathryn M; Weis, Dominique A M (2008): Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: Pervasive fluid flow at Pito Deep. Geochemistry, Geophysics, Geosystems, 9, Q06010, https://doi.org/10.1029/2007GC001901
    Publication Date: 2023-05-12
    Description: Fluid flow through the axial hydrothermal system at fast spreading ridges is investigated using the Sr-isotopic composition of upper crustal samples recovered from a tectonic window at Pito Deep (NE Easter microplate). Samples from the sheeted dike complex collected away from macroscopic evidence of channelized fluid flow, such as faults and centimeter-scale hydrothermal veins, show a range of 87Sr/86Sr from 0.7025 to 0.7030 averaging 0.70276 relative to a protolith with 87Sr/86Sr of ~0.7024. There is no systematic variation in 87Sr/86Sr with depth in the sheeted dike complex. Comparison of these new data with the two other localities that similar data sets exist for (ODP Hole 504B and the Hess Deep tectonic window) reveals that the extent of Sr-isotope exchange is similar in all of these locations. Models that assume that fluid-rock reaction occurs during one-dimensional (recharge) flow lead to significant decreases in the predicted extent of isotopic modification of the rock with depth in the crust. These model results show systematic misfits when compared with the data that can only be avoided if the fluid flow is assumed to be focused in isolated channels with very slow fluid-rock exchange. In this scenario the fluid at the base of the crust is little modified in 87Sr/86Sr from seawater and thus unlike vent fluids. Additionally, this model predicts that some rocks should show no change from the fresh-rock 87Sr/86Sr, but this is not observed. Alternatively, models in which fluid-rock reaction occurs during upflow (discharge) as well as downflow, or in which fluids are recirculated within the hydrothermal system, can reproduce the observed lack of variation in 87Sr/86Sr with depth in the crust. Minimum time-integrated fluid fluxes, calculated from mass balance, are between 1.5 and 2.6 * 10**6 kg/m**2 for all areas studied to date. However, new evidence from both the rocks and a compilation of vent fluid compositions demonstrates that some Sr is leached from the crust. Because this leaching lowers the fluid 87Sr/86Sr without changing the rock 87Sr/86Sr, these mass balance models must underestimate the time-integrated fluid flux. Additionally, these values do not account for fluid flow that is channelized within the crust.
    Keywords: -; Al-4076; Al-4081; Al-4082; Al-4086; Alteration; ALVIN; Area/locality; AT11-23; Atlantis (1997); Barium; Caesium; Cerium; Chromium; Cobalt; Copper; Depth, bathymetric; Depth, relative; Dysprosium; Epidote; Erbium; Europium; Event label; Gadolinium; Grain size description; Hafnium; Holmium; Inductively coupled plasma - mass spectrometry (ICP-MS); J2-119-1; J2-119-2; J2-123-4; J2-123-5; Lanthanum; LATITUDE; Lead; LONGITUDE; Lutetium; Mineral assemblage; Neodymium; Nickel; Praseodymium; Remote operated vehicle Jason II; ROVJ; Rubidium; Samarium; Sample code/label; Sample code/label 2; Sample comment; Scandium; Strontium; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, error; Submersible Alvin; Terbium; Thorium; Thulium; Titanium; Uranium; Vanadium; Western Pacific; Ytterbium; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 3523 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barker, A K; Coogan, Laurence A; Gillis, Kathryn M (2010): Insights into the behaviour of sulphur in mid-ocean ridge axial hydrothermal systems from the composition of the sheeted dyke complex at Pito Deep. Chemical Geology, 275(1-2), 105-115, https://doi.org/10.1016/j.chemgeo.2010.05.003
    Publication Date: 2023-05-12
    Description: The behaviour of seawater sulphate in hydrothermal systems at intermediate- to fast-spreading ridges is investigated using new analyses of the d34S, sulphur concentration and Fe2O3/Fe2O3total, combined with existing 87Sr/86Sr, of sheeted dykes from the Pito Deep tectonic window. The Pito Deep sheeted dyke complex has a similar composition to the sheeted dykes drilled at ODP Hole 504B suggesting that the measured compositions are representative of sheeted dyke complexes at intermediate- to fast-spreading ridges. The dykes show only small increases in ?34S which, combined with the rock dominated d34S of vent fluids, requires the majority of seawater sulphate to be precipitated as anhydrite before the fluid reacts with the sheeted dyke complex. This loss of sulphate from the fluid means that a much higher Fe2O3 in the sheeted dyke complex than in fresh MORB glasses cannot be explained by oxidation due to seawater sulphate reduction during fluid–rock reaction. Instead, oxidation probably occurs due to degassing of reduced species, largely H2, during dyke emplacement and solidification. A mass balance model that accounts for anhydrite precipitation and Sr partitioning into the anhydrite, as well as fitting the concentration and isotopic ratios of S and Sr in the sheeted dykes and vent fluids, suggests water/rock ratios of ?1. For a 1 km thick sheeted dyke complex this is equivalent to a fluid flux of ?3 * 10**6 kg/m**2, sufficient to remove ? 60% of the latent heat of crystallization from the lower crust
    Keywords: -; Al-4076; Al-4081; Al-4082; Al-4086; Alteration; ALVIN; AT11-23; Atlantis (1997); Depth, bathymetric; Depth, relative; DEPTH, sediment/rock; Event label; Grain size description; Iron oxide, Fe2O3; Iron oxide, Fe2O3/Iron oxide, FeO ratio; J2-119-1; J2-119-2; J2-123-4; J2-123-5; LATITUDE; Lithology/composition/facies; LONGITUDE; Mineral assemblage; Remote operated vehicle Jason II; ROVJ; Sample code/label; Submersible Alvin; Western Pacific; δ34S, sulfate; δ34S, sulfide
    Type: Dataset
    Format: text/tab-separated-values, 741 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-19
    Description: International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of Ocean Drilling Program (ODP) Site 792, and at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including distinctive black glassy mafic ash layers that may record large-volume eruptions on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layers and enclosing sediments and to better constrain the thickness of the mafic ash layers. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory”; this was because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear part of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli tuff, and tuff breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of tephra are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli tuff of fine grain size (clasts 〈 3 cm). These were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than this depth is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/–1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry is that arc-front versus rear-arc sources can be distinguished in the upper, relatively distal 1320 m of section (Units I–V), whereas the lower, proximal 25% of the section (Units VI–VII) may be geochemically heterogeneous, suggesting that the rear-arc magmas only fully compositionally diverged after ~13 Ma.
    Type: Report , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    IODP
    In:  In: Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. IODP, College Station, Texas, n/a.
    Publication Date: 2015-09-15
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    IODP
    In:  In: Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. IODP, College Station, Texas, p. 142.
    Publication Date: 2015-12-02
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    IODP
    In:  In: Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. IODP, College Station, Texas, p. 42.
    Publication Date: 2015-12-02
    Description: Introduction This chapter of the International Ocean Discovery Program (IODP) Expedition 350 Proceedings volume documents the procedures and tools employed in the various shipboard laboratories of the R/V JOIDES Resolution during Expedition 350. This information applies only to shipboard work described in the Expedition Reports section of this volume. Methods for shore-based analyses of Expedition 350 samples and data will be described in the individual scientific contributions to be published in the open literature or in the Expedition Research Results section of this volume. This section describes procedures and equipment used for drilling, coring, and hole completion; core handling; computation of depth for samples and measurements; and sequence of shipboard analyses. Subsequent sections describe specific laboratory procedures and instruments in more details.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    IODP
    In:  In: Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. , ed. by Tamura, Y., Busby, C. J. and Blum, P. IODP, College Station, Texas, pp. 1-65.
    Publication Date: 2017-03-22
    Description: International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, and 1.5 km west of Ocean Drilling Program (ODP) Site 792, at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including a distinctive black glassy mafic ash layer that may record a large-volume subaqueous eruption on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layer and its enclosing sediments and to better constrain its thickness. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory” because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc-front to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear-arc region of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli-tuff, and tuff-breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of volcaniclastics are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli-tuff of fine grain size (clasts 〈3 cm). These volcaniclastics were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than ~1300 mbsf is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/−1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry of solids is that arc-front versus rear-arc sources can be distinguished for individual intervals in the upper, relatively distal 1320 m of the section (Units I–V), whereas data for the lower, proximal 25% of the section (Units VI–VII) overlap and exceed the compositional fields for Neogene rear-arc seamounts and Quaternary arc-front volcanoes. This suggests that the compositional divergence between arc-front and rear-arc magmas only fully developed after ~13 Ma.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-03-03
    Description: Objectives There are only 0.70 licensed physicians per 1000 people in India. Thus, pharmacies are a primary source of healthcare and patients often seek their services directly, especially in village settings. However, there is wide variability in a pharmacy employee's training, which contributes to inappropriate antibiotic dispensing and misuse. These practices increase the risk of antibiotic resistance and poor patient outcomes. This study seeks to better understand the factors that drive inappropriate antibiotic dispensing among pharmacy employees in India's village communities. Design We conducted a mixed-methods study of the antibiotic dispensing practices, including semistructured interviews and a pilot cross-sectional Knowledge, Attitudes and Practice survey. All data were transcribed, translated from Hindi into English, and coded for themes. Setting Community pharmacies in villages in Haryana, India. Participants We recruited 24 community pharmacy employees (all male) by convenience sampling. Participants have a range of characteristics regarding village location, monthly income, baseline antibiotic knowledge, formal education and licensure. Results 75% of pharmacy employees in our study were unlicensed practitioners, and the majority had very limited understanding of antibiotic resistance. Furthermore, only half could correctly define the term antibiotics. All reported that at times they dispensed antibiotics without a prescription. This practice was more common when treating patients who had limited access to a licensed physician because of economic or logistic reasons. Many pharmacy workers also felt pressure to provide shortened medication courses to poorer clientele, and often dispensed only 1 or 2 days' worth of antibiotics. Such patients rarely returned to the pharmacy for the complete course. Conclusions This study highlights the need for short-term, intensive training programmes on antibiotic prescribing and resistance that can be disseminated to village pharmacies. Programme development should take into account the realities of working with poor clientele, especially in areas of limited healthcare access.
    Keywords: Open access, Global health, Infectious diseases, Public health, Qualitative research
    Electronic ISSN: 2044-6055
    Topics: Medicine
    Published by BMJ Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...