GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 827-827 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 17 (1975), S. 279-283 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 30 (1987), S. 37-51 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A methodology for mathematically analyzing agitator performance and mass transfer in large multiturbine production fermentors is presented. The application of this approach provides a method for determining axial dissolved oxygen profiles under conditions of known mass transfer rates as a function of agitation-aeration characteristics. A stagewise approach is used which divides the fermentor into a series of mixing cells. This allows for each turbine and mixing cell to be individually optimized. The model also permits the determination of the mass transfer coefficient for each turbine based upon limited dissolved oxygen data. The primary limitation of this approach rests in the limited data and correlations available for multiturbine systems. The structure of the modelling approach can serve as a basis for testing single turbine correlations and adapting them to multiturbine systems. The step-by-step details of the mathematical analysis are presented and interpreted. A series of computer simulations demonstrate the effect of typical fermentor operating variables on the axial dissolved oxygen profile. Further simulations demonstrate the effect of modifying agitator blade numbers on the dissolved oxygen profile and agitator power requirement.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...