GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-10
    Keywords: DEPTH, ice/snow; EDML; EDRILL; EPICA; EPICA-Campaigns; EPICA drill; EPICA Dronning Maud Land, DML28C01_00; European Project for Ice Coring in Antarctica; Grains; Grain size, mean radius; Kohnen Station; Subgrain-boundary density; Subgrain-boundary type
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Weikusat, Ilka; Kipfstuhl, Sepp; Faria, Sérgio H; Azuma, Nobuhiko; Miyamoto, Atsushi (2009): Subgrain boundaries and related microstructural features in EDML (Antarctica) deep ice core. Journal of Glaciology, 55(191), 461-472, https://doi.org/10.3189/002214309788816614
    Publication Date: 2023-10-28
    Description: Subgrain boundaries revealed as shallow sublimation grooves on ice sample surfaces are a direct and easily observable feature of intracrystalline deformation and recrystallization. Statistical data obtained from the EPICA Dronning Maud Land (EDML) deep ice core drilled in East Antarctica cannot detect a depth region of increased subgrain-boundary formation. Grain-boundary morphologies show a strong influence of internal strain energy on the microstructure at all depths. The data do not support the classical view of a change of dominating recrystallization regimes with depth. Three major types of subgrain boundaries, reflecting high mechanical anisotropy, are specified in combination with crystal-orientation analysis.
    Keywords: EDML; EDRILL; EPICA; EPICA-Campaigns; EPICA drill; EPICA Dronning Maud Land, DML28C01_00; European Project for Ice Coring in Antarctica; Kohnen Station; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; SPP1158
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-10
    Keywords: DEPTH, ice/snow; EDML; EDRILL; EPICA; EPICA-Campaigns; EPICA drill; EPICA Dronning Maud Land, DML28C01_00; European Project for Ice Coring in Antarctica; Grain size, mean radius; Kohnen Station
    Type: Dataset
    Format: text/tab-separated-values, 57 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 87 (1983), S. 4060-4064 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-09
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3International Symposium on Contribution of Glaciers and Ice Sheets to Sea-Level Change
    Publication Date: 2014-11-10
    Description: With the warming climate, ice masses on Earth are expected to increasingly contribute to a rising sea level. As for any material, the ice bodies’ temperature is a key variable to change the material’s properties, especially the rheology. In the case of ice in natural environments on Earth, temperature is always close to the material’s melting point. Therefore ice can be regarded as a ‘hot material’ (homologous temperatures T/T_m ca. 0.7 to 0.9). This means that recrystallization plays a decisive role in governing the state and thus the behaviour of the material, as it continuously resets the mechanical properties. Recrystallization as a set of control mechanisms has been recognized and interpreted in many ice cores in the last decades, and certain recrystallization regimes have been assigned to special ice-sheet depth ranges. This assignment was based on microstructure observations (mainly grain size) and estimated boundary conditions (temperature and stress/strain amounts) which change systematically with depth. To generalize the use of recrystallization regimes we decouple their occurrence from the ice-sheet depth information and connect them directly to the activators and causes: strain rate and temperature.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-01-22
    Description: Mass loss of the Greenland ice sheet is accelerating, which is attributed to increased ice stream discharge and changes in surface mass balance including increased runoff. Ice stream discharge is caused by both ice deformation and basal sliding. For a better projection of future mass loss, it is important to understand deformation mechanisms of polycrystalline ice in ice sheet. Deformation properties of polycrystalline material are related to its microstructure (e.g. crystal grain orientation and size). As recrystallization and recovery are occurring together in ice sheet, microstructural analysis of ice is essential. Electron backscatter diffraction (EBSD) is a method for measuring crystal lattice orientation with high angular and spatial resolutions. Both c- and a-axes of ice can be measured. We analyzed Greenland NEEM ice core and the preliminary result shows that most subgrain boundaries (SGBs) observed by optical microscopy have lattice misorientations 〈 4°. This result is in accordance with analyses of Antarctic EDML ice core by X-ray diffractometry while it differs from threshold angle of SGB/GB estimated with a dislocation theory. The observation results from ice sheet ice could contribute to better estimations of strain rate by models based on microstructural processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-23
    Description: The behaviour of Earth’s ice sheets is intensely monitored via surface and remote sensing techniques to improve predictions of sea level evolution. In the 3rd dimension however, in particular concerning the ice material properties, this behaviour can only be studied via ice core drilling. Material properties control the deformation in general, and specifically the strain localization such as observed in ice streams, which supply the major discharges into the oceans. Currently, the first ice core on an active ice stream, the North-East Greenland Ice Stream (NEGIS) is being drilled. EastGRIP (East Greenland Ice-Core Project) drilling started in 2016 and will likely be ongoing until 2019. This is the first chance to study ice fabrics from a dynamically active region, with a deformation regime differing from the usual locations of previous long ice cores, which are usually situated on domes or on ice divides. We will present the results from the CPO (c-axes fabric) and the grain size measurements of the uppermost 350 m, which is the depth to which the ice core has been processed for analysis so far. 54 core pieces (bags) were selected for measurements, with a minimum depth resolution of 10 m. From these 275 thin sections were prepared in total, and measured and processed on site by means of an Automated Fabric Analyzer and a Large-Area-Scanning Macroscope (LASM). Mostly entire bags have been measured, to ensure constrains on small-scale variability with depth. The CPO patterns found in the upper 350 m at EastGRIP show (1) a more rapid evolution of c-axes anisotropy with depth compared to other ice cores and (2) partly novel characteristics in the c-axes distributions. (1) The microstructural measurements begin at a depth below the firn ice transition at 118 m. Starting with a very broad single maximum distribution, the alignment of the c-axes happens much more rapidly with depth than seen in ice cores from divides or domes. In our deepest samples available (350 m) we observe an anisotropy of a strength comparable to samples from ∼1000 m depth at for example GRIP, NEEM and EDML. (2) Between 118 m and 160 m depth the almost random to very broad single maximum is similar to shal- lowest samples in other ice cores. Classically, we interpret this distribution as a result of vertical compression caused by the weight of overlying layers. An alternative interpretation may be a snow metamorphosis influenced by the temperature gradient. This weak pattern is, however, quickly overprinted in 160 m to 200 m, where a progressive evolution to girdle distribution is observed. Such a vertical great girdle can evolve with extension along flow, and, thus, the observed distribution indicates that the ice at this depth is deforming under conditions close to pure shear, rather than being translated by rigid block movement. This early-onset of deformation seems further supported by the observation of a broad “hourglass shaped” girdle, developing into a “butterfly shaped” cross girdle, which is observed for the first time in ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Thermo Fischer Scientific (including FEI company)
    In:  EPIC3Materials Science Analytical Technique Seminar, Shinagawa, Tokyo, 2017-09-13-2017-09-13Shinagawa, Tokyo, Thermo Fischer Scientific (including FEI company)
    Publication Date: 2017-11-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    National Institute of Polar Research, Japan
    In:  EPIC3The Eighth Symposium on Polar Science, NIPR, Tachikawa, Tokyo, 2017-12-04-2017-12-08Tachikawa, Tokyo, National Institute of Polar Research, Japan
    Publication Date: 2019-12-02
    Description: Mass loss of the Greenland ice sheet is accelerating, which is attributed to increased ice stream discharge and changes in surface mass balance including increased runoff. Ice stream discharge is caused by both ice deformation and basal sliding. For better projection of future mass loss, it is important to understand deformation mechanisms of polycrystalline ice in ice sheet. Deformation properties of polycrystalline material are related to its microstructure (e.g. crystal grain orientation and size). As recrystallization and recovery are occurring together in ice sheet, analysis of microstructure of ice is essential. Electron backscatter diffraction (EBSD) is a method for measuring crystal lattice orientation with high angular and spatial resolutions. Both c- and a-axes of ice can be measured. We analyzed Greenland NEEM ice core and the preliminary result shows that most subgrain boundaries (SGBs) observed by optical microscopy have lattice misorientations 〈 4°. This result is in accordance with analyses of Antarctic EDML ice core by X-ray diffractometry while it differs from threshold angle of SGB/GB estimated with a dislocation theory. The observation results from ice sheet ice could contribute to better estimations of strain rate by models based on microstructural processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...