GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2021-04-23
    Description: Certification of trace metals in seawater certified reference materials (CRMs) NASS-7 and CASS-6 is described. At the National Research Council Canada (NRC), column separation was performed to remove the seawater matrix prior to the determination of Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ni, U, V, and Zn, whereas As was directly measured in 10-fold diluted seawater samples, and B was directly measured in 200-fold diluted seawater samples. High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was used for elemental analyses, with double isotope dilution for the accurate determination of B, Cd, Cr, Cu, Fe, Pb, Mo, Ni, U, and Zn in seawater NASS-7 and CASS-6, and standard addition calibration for As, Co, Mn, and V. In addition, all analytes were measured using standard addition calibration with triple quadrupole (QQQ)-ICPMS to provide a second set of data at NRC. Expert laboratories worldwide were invited to contribute data to the certification of trace metals in NASS-7 and CASS-6. Various analytical methods were employed by participants including column separation, co-precipitation, and simple dilution coupled to ICPMS detection or flow injection analysis coupled to chemiluminescence detection, with use of double isotope dilution calibration, matrix matching external calibration, and standard addition calibration. Results presented in this study show that majority of laboratories have demonstrated their measurement capabilities for the accurate determination of trace metals in seawater. As a result of this comparison, certified/reference values and associated uncertainties were assigned for 14 elements in seawater CRMs NASS-7 and CASS-6, suitable for the validation of methods used for seawater analysis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: It is widely accepted that iron (Fe)-binding organic ligands play a crucial role in Fe distribution in the marine environment and thus in Fe biogeochemistry. Although Competitive Ligand Equilibration – Adsorptive Cathodic Stripping Voltammetry (CLE-AdCSV) is a well-established technique to investigate Fe chemical speciation in marine samples, several impediments still need to be addressed. These include the extrapolation of laboratory measurements to in-situ conditions, the harmonization of the analytical procedures used, and the applicability of the methods over salinity ranges wider than seawater (e.g., sea ice). This work focusses on the calibration of 2-(2-thiazolylazo)-p-cresol (TAC), salicylaldoxime (SA) and 1-nitroso-2-naphthol (NN), along the salinity range 1–90, and titration of natural samples at two different temperatures (4 °C and 20 °C). The artificial ligand concentration was 10 μM for TAC and 5 μM for SA and NN. Calibrations showed that increasing salinity caused a decrease in the conditional stability constants (logK'Fe’AL) for NN and SA (although different behaviours were noted for the two species FeSA and FeSA2). Less accuracy was noted using TAC, which behaved inconsistently outside the 21 〈 S 〈 35 range, and its use is therefore discouraged in fresh and highly saline waters. Titrations of natural samples showed that only SA covered the salinity range selected, up to 78, and its use is therefore recommended in sea-ice studies. The side reaction coefficient (logα'Fe’AL) of each artificial ligand was found to be influenced by temperature differently: logα'Fe’SA was higher at lower temperature (4 °C), whereas logα'Fe’SA2 and logα'Fe’NN3 increased with increasing temperature (to 20 °C). Although titrations performed at 4 °C highlighted that the uncomplexed Fe fraction was 14% lower than at 20 °C, with potential consequences on primary productivity, the percentage of natural Fe complexed was 〉99%. Future investigations should consider the analysis of the samples at a temperature as close as possible to in-situ conditions to reduce the potential temperature effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...