GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
  • 1
    Publication Date: 2021-06-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-30
    Description: In preparation of the German spaceborne imaging spectroscopy mission EnMAP (The Environmental Mapping and Analysis Program) and its upcoming launch in early 2022, the data product validation activities have been intensified. As part of the science preparation and mission support project led by the German Research Center (GFZ) Potsdam, the overall quality of the official EnMAP products has to be accessed and evaluated independently from the data quality control activities performed by the Ground Segment at DLR EOC. Therefore, the radiometric, spectral, reflective, geometric and general quality of the three official EnMAP products (L1B, L1C and L2A) has to be validated during the commissioning and nominal phase.This paper presents an update of the data product validation activities, an in-depth insight into the overall approach and into specifically designed methods described in the EnMAP Product Validation Plan.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 9(6), pp. 2127-2143, ISSN: 1726-4189
    Publication Date: 2019-07-17
    Description: In this study temporal variations of coccolithophore blooms are investigated using satellite data. Eight years (from 2003 to 2010) of data of SCIAMACHY, a hyper-spectral satellite sensor on-board ENVISAT, were processed by the PhytoDOAS method to monitor the biomass of coccolithophores in three selected regions. These regions are characterized by frequent occurrence of large coccolithophore blooms. The retrieval results, shown as monthly mean time series, were compared to related satellite products, including the total surface phytoplankton, i.e. total chlorophyll a (from GlobColour merged data) and the particulate inorganic carbon (from MODIS-Aqua). The inter-annual variations of the phytoplankton bloom cycles and their maximum monthly mean values have been compared in the three selected regions to the variations of the geophysical parameters: sea-surface temperature (SST), mixed-layer depth (MLD) and surface wind-speed, which are known to affect phytoplankton dynamics. For each region, the anomalies and linear trends of the monitored parameters over the period of this study have been computed. The patterns of total phytoplankton biomass and specific dynamics of coccolithophore chlorophyll a in the selected regions are discussed in relation to other studies. The PhytoDOAS results are consistent with the two other ocean color products and support the reported dependencies of coccolithophore biomass dynamics on the compared geophysical variables. This suggests that PhytoDOAS is a valid method for retrieving coccolithophore biomass and for monitoring its bloom developments in the global oceans. Future applications of time series studies using the PhytoDOAS data set are proposed, also using the new upcoming generations of hyper-spectral satellite sensors with improved spatial resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...