GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sprache
Erscheinungszeitraum
  • 1
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 247(2008), 1/2, Seite 46-60, 1872-6151
    In: volume:247
    In: year:2008
    In: number:1/2
    In: pages:46-60
    Beschreibung / Inhaltsverzeichnis: This study documents the fractal characteristics of submarine mass movement statistics and morphology within the Storegga Slide. Geomorphometric mapping is used to identify one hundred and fifteen mass movements from within the Storegga Slide scar and to extract morphological information about their headwalls. Analyses of this morphological information reveal the occurrence of spatial scale invariance within the Storegga Slide. Non-cumulative frequency-area distribution of mass movements within the Storegga Slide satisfies an inverse power law with an exponent of 1.52. The headwalls exhibit geometric similarity at a wide range of scales and the lengths of headwalls scale with mass movement areas. Composite headwalls are self-similar. One of the explanations of the observed spatial scale invariance is that the Storegga Slide is a geomorphological system that may exhibit self-organized criticality. In such a system, the input of sediment is in the form of hemipelagic sedimentation and glacial sediment deposition, and the output is represented by mass movements that are spatially scale invariant. In comparison to subaerial mass movements, the aggregate behavior of the Storegga Slide mass movements is more comparable to that of the theoretical ‘sandpile’ model. The origin of spatial scale invariance may also be linked to the retrogressive nature of the Storegga Slide. The geometric similarity in headwall morphology implies that the slope failure processes are active on a range of scales, and that modeling of slope failures and geohazard assessment can extrapolate the properties of small landslides to those of larger landslides, within the limits of power law behavior. The results also have implications for the morphological classification of submarine mass movements, because headwall shape can be used as a proxy for the type of mass movement, which can otherwise only be detected with very high resolution acoustic data that are not commonly available.
    Materialart: Online-Ressource
    ISSN: 1872-6151
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Geochemistry, geophysics, geosystems, Hoboken, NJ : Wiley, 2000, 9(2008), 4, 1525-2027
    In: volume:9
    In: year:2008
    In: number:4
    In: extent:16
    Beschreibung / Inhaltsverzeichnis: Quantification of fluid fluxes from cold seeps depends on accurate estimates of the spatial validity of flux measurements. These estimates are strongly influenced by the choice of geoacoustic mapping tools. Multibeam bathymetry, side-scan sonar, and Chirp subbottom profiler data of several mound-shaped cold seeps offshore central Costa Rica show great variety in morphology and structure although the features are only a few kilometers apart. Mound 11 (a 35 m high and 1000 m in diameter structure), situated in the SE of the study area, has an irregular morphology but a smooth surface on side-scan sonar data, while mound 12 (30 m high, 600 m across) is a cone of more regular outline but with a rough surface, and mound Grillo (5 m high, 500 m across) shows the same rough surface as mound 12 but without relief. Video observations and sediment cores indicate that the structures are formed by the precipitation of authigenic carbonates and indications for extensive mud extrusion are absent, except for one possible mudflow at mound 11. Different sonar frequencies result in variable estimates of the extent of these mounds with low frequencies suggesting much wider cold seeps, consequently overestimating fluid fluxes. The absence of mud volcanism compared to accretionary prisms where mud volcanism occurs is related to different tectonic styles: strong sediment overpressure and thrust faulting in typical accretionary prisms can generate mud volcanism, while subduction erosion and normal faulting (extension) of the overriding plate at the Costa Rican margin result in fluid venting driven by only slight fluid overpressures.
    Materialart: Online-Ressource
    Seiten: 16 , graph. Darst
    ISSN: 1525-2027
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Allin, Joshua R; Hunt, James E; Talling, Peter J; Clare, Michael A; Pope, Ed; Masson, Douglas G (2016): Different frequencies and triggers of canyon filling and flushing events in Nazaré Canyon, offshore Portugal. Marine Geology, 371, 89-105, https://doi.org/10.1016/j.margeo.2015.11.005
    Publikationsdatum: 2023-02-06
    Beschreibung: Submarine canyons are one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has importance for sediment budgets, carbon cycling, and geohazard assessment. Despite increasing knowledge of turbidity current triggers, the down-canyon variability in turbidity current frequency within most canyon systems is not well constrained. New AMS radiocarbon chronologies from canyon sediment cores illustrate significant variability in turbidity current frequency within Nazaré Canyon through time. Generalised linear models and Cox proportional hazards models indicate a strong influence of global sea level on the frequency of turbidity currents that fill the canyon. Radiocarbon ages from basin sediment cores indicate that larger, canyon-flushing turbidity currents reaching the Iberian Abyssal Plain have a significantly longer average recurrence interval than turbidity currents that fill the canyon. The recurrence intervals of these canyon-flushing turbidity currents also appear to be unaffected by long-term changes in global sea level. Furthermore, canyon-flushing and canyon-filling have very different statistical distributions of recurrence intervals. This indicates that the factors triggering, and thus controlling the frequency of canyon-flushing and canyon-filling events are very different. Canyon-filling appears to be predominantly triggered by sediment instability during sea level lowstand, and by storm and nepheloid transport during the present day highstand. Canyon-flushing exhibits time-independent behaviour. This indicates that a temporally random process, signal shredding, or summation of non-random processes that cannot be discerned from a random signal, are triggering canyon flushing events.
    Materialart: Dataset
    Format: application/zip, 5 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-02-07
    Schlagwort(e): AGE; DEPTH, sediment/rock; James Cook; JC27; JC27-51; Length/duration of interval; Nazare Canyon, off SW Portugal; Number of turbidites; PC; Piston corer; Turbidite thickness
    Materialart: Dataset
    Format: text/tab-separated-values, 83 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-02-08
    Schlagwort(e): Age, 14C AMS; Age, dated; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; James Cook; JC27; JC27-46; Nazare Canyon, off SW Portugal; PC; Piston corer; Thickness
    Materialart: Dataset
    Format: text/tab-separated-values, 213 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2023-02-07
    Schlagwort(e): Age, calculated calendar years; Age model; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; James Cook; JC27; JC27-46; Nazare Canyon, off SW Portugal; Number of years; PC; Piston corer
    Materialart: Dataset
    Format: text/tab-separated-values, 644 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2023-02-08
    Schlagwort(e): Age model; DEPTH, sediment/rock; James Cook; JC27; JC27-46; Length/duration of interval; Nazare Canyon, off SW Portugal; PC; Piston corer; Turbidite thickness
    Materialart: Dataset
    Format: text/tab-separated-values, 604 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-06-27
    Schlagwort(e): Age, 14C AMS; Age, 14C calibrated; Age, dated; Age, dated standard error; Age, maximum/old; Calendar age, maximum/old; Calendar age, minimum/young; D15738#1; D15739; D297; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Discovery (1962); Event label; James Cook; JC27; JC27-46; JC27-47; JC27-51; Laboratory code/label; Latitude of event; Longitude of event; MEGAC; MegaCorer; Nazare Canyon, off SW Portugal; PC; Piston corer; Reference of data
    Materialart: Dataset
    Format: text/tab-separated-values, 229 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1365-3091
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: The Moroccan Turbidite System (MTS) on the north-west African margin extends 1500 km from the head of the Agadir Canyon to the Madeira Abyssal Plain, making it one of the longest turbidite systems in the world. The MTS consists of three interconnected deep-water basins, the Seine Abyssal Plain (SAP), the Agadir Basin and the Madeira Abyssal Plain (MAP), connected by a network of distributary channels. Excellent core control has enabled individual turbidites to be correlated between all three basins, giving a detailed insight into the turbidite depositional architecture of a system with multiple source areas and complex morphology. Large-volume (〉 100 km3) turbidites, sourced from the Morocco Shelf, show a relatively simple architecture in the Madeira and Seine Abyssal Plains. Sandy bases form distinct lobes or wedges that thin rapidly away from the basin margin and are overlain by ponded basin-wide muds. However, in the Agadir Basin, the turbidite fill is more complex owing to a combination of multiple source areas and large variations in turbidite volume. A single, very large turbidity current (200–300 km3 of sediment) deposited most of its sandy load within the Agadir Basin, but still had sufficient energy to carry most of the mud fraction 500 km further downslope to the MAP. Large turbidity currents (100–150 km3 of sediment) deposit most of their sand and mud fraction within the Agadir Basin, but also transport some of their load westwards to the MAP. Small turbidity currents (〈 35 km3 of sediment) are wholly confined within the Agadir Basin, and their deposits pinch out on the basin floor. Turbidity currents flowing beyond the Agadir Basin pass through a large distributary channel system. Individual turbidites correlated across this channel system show major variations in the mineralogy of the sand fraction, whereas the geochemistry and micropalaeontology of the mud fraction remain very similar. This is interpreted as evidence for separation of the flow, with a sand-rich, erosive, basal layer confined within the channel system, overlain by an unconfined layer of suspended mud. Large-volume turbidites within the MTS were deposited at oxygen isotope stage boundaries, during periods of rapid sea-level change and do not appear to be specifically connected to sea-level lowstands or highstands. This contrasts with the classic fan model, which suggests that most turbidites are deposited during lowstands of sea level. In addition, the three largest turbidites on the MAP were deposited during the largest fluctuations in sea level, suggesting a link between the volume of sediment input and the magnitude of sea-level change.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    ISSN: 1365-3091
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Some of the Earth's largest submarine debris flows are found on the NW African margin. These debris flows are highly efficient, spreading hundreds of cubic kilometres of sediment over a wide area of the continental rise where slopes angles are often 〈1°. However, the processes by which these debris flows achieve such long run-outs, affecting tens of thousands of square kilometres of seafloor, are poorly understood. The Saharan debris flow has a run-out of ≈700 km, making it one of the longest debris flows on Earth. For its distal 450 km, it is underlain by a relatively thin and highly sheared basal volcaniclastic layer, which may have provided the low-friction conditions that enabled its extraordinarily long run-out. Between El Hierro Island and the Hijas Seamount on the continental rise, an ≈25- to 40-km-wide topographic gap is present, through which the Saharan debris flow and turbidites from the continental margin and flanks of the Canary Islands passed. Recently, the first deep-towed sonar images have been obtained, showing dramatic erosional and depositional processes operating within this topographic `gap' or `constriction'. These images show evidence for the passage of the Saharan debris flow and highly erosive turbidity currents, including the largest comet marks reported from the deep ocean. Sonar data and a seismic reflection profile obtained 70 km to the east, upslope of the topographic `gap', indicate that seafloor sediments to a depth of ≈30 m have been eroded by the Saharan debris flow to form the basal volcaniclastic layer. Within the topographic `gap', the Saharan debris flow appears to have been deflected by a low (≈20 m) topographic ridge, whereas turbidity currents predating the debris flow appear to have overtopped the ridge. This evidence suggests that, as turbidity currents passed into the topographic constriction, they experienced flow acceleration and, as a result, became highly erosive. Such observations have implications for the mechanics of long run-out debris flows and turbidity currents elsewhere in the deep sea, in particular how such large-scale flows erode the substrate and interact with seafloor topography.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...