GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2013
    In:  Blood Vol. 122, No. 21 ( 2013-11-15), p. 2281-2281
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2281-2281
    Abstract: Recent discoveries of activating JAK mutations in patients with myeloproliferative diseases (MPNs) coupled with the so far known biology of JAKs in cytokine signaling provided the rationale for targeting these kinases in MPNs. Ruxolitinib (INCB018424) is the first JAK1/JAK2 inhibitor approved for treatment of patients with myelofibrosis (MF). Although ruxolitinib shows limited anti-clonal activity, a profound improvement of quality of life and splenomegaly in MF patients is observed and linked to a substantial reduction of MF-associated circulating pro-inflammatory cytokines and pro-angiogenic factors. JAK/STAT-signalling is known to be involved in the regulation of various immune cells including CD4+ T cells, which critically orchestrate inflammatory responses. To better understand how ruxolitinib is modulating CD4+ T cell response, we here provide an in depth analysis of CD4+ T cell function upon ruxolitinib exposure. Methods Highly purified CD4+ T cells isolated from healthy human PBMC from buffy coats were stimulated for 4 days with i) plate bound anti-CD3, ii) plate bound anti-CD3 and soluble anti-CD28 antibodies, iii) IL-2 in the presence of increasing concentrations of ruxolitinib (0.1µM – 10µM) or the respective vehicle control (DMSO). Phenotype and function were analyzed by flow cytometry. Cytokine production was quantified either by intracellular staining and subsequent flow cytometry or by flow-based bead assays (Human Th1/Th2 11plex FlowCytomix Multiplex). Proliferation was detected by CFSE dilution analysis using FACS. CD4+CD62L+ T cells obtained from C57BL/6 mice were isolated by using the CD4+CD62L+ T Cell Isolation Kit (Miltenyi Biotec) and subsequently differentiated into TH1, TH2, TH9, TH17 and iTreg. Polarization into the different CD4+ T cell subsets was induced by cytokine/antibody cocktails (TH1: IL-12 and anti-IL4; TH2: IL-4 and anti-IL12; TH9: IL-4, TGF-β and anti-IFNγ; iTreg: IL-2 and TGFβ; TH17: IL-6, TGFβ, IL-1b, anti-IFNγ and anti-IL4) together with anti-CD3 and anti-CD28. For analysis of apoptosis/necrosis induction, annexin/propidium iodide staining was applied. Signalling events were analyzed by phospho-flow technology to evaluate ruxolitinib-mediated changes of TCR- and/or cytokine-induced signalling cascades (using pS6, pSTAT1, pSTAT3, pSTAT5, pERK, pAKT, pP38, pFos, pJun and pZAP70 antibodies). Results CD4+ T cell proliferation is significantly and dose-dependently suppressed by ruxolitinib when T cells were activated by each of the three conditions tested. Of note, we could not detect any changes in the viability of ruxolitinib-exposed CD4+ T cells. In line with previous studies, production of pro-inflammatory cytokines such as IL-1β, IL-5, IL-6 and TNF-α were dose-dependently inhibited in ruxolitinib-exposed CD4+ T cells, although expression of the pro-inflammatory IL-8 was increased in a dose-dependent manner. Interestingly, despite the complete proliferation block, we also observed an increase in IL-2 and IFNγ particularly at the lower ruxolitinib concentrations (0.1μM) followed by a dose dependent reduction at higher dose-levels (10µM). After short-term activation of ruxolitinib-exposed CD4+ T cells by anti-CD3 and anti-CD28, proximal TCR signaling events (phosphorylation of SLP76 and ZAP70) were not affected, whereas a clear down-regulation of IL-2 induced STAT5 phosphorylation could be detected. After wash-out the ruxolitinib-induced inhibitory effects on CD4+ T cell function were fully reversible, as shown by induction of the T cell activation markers CD25 and CD69. Finally, we differentiated murine CD4+ naïve T cells into the various T Helper cell subsets and could provide clear evidence that the differentiation capacity of naïve CD4+ T cells into TH1, TH9, TH17 and iTreg was markedly reduced, whereas inhibition of Th2 differentiation was only marginally affected. The anti-inflammatory effects of ruxolitinib are currently tested in a TH9-dependent lung inflammation model in mice. Conclusion We could show that ruxolitinib potently affects CD4+ T cell biology. These data provide a rationale for testing JAK inhibitors in diseases triggered by hyperactive CD4+ T cells, such as autoimmune diseases. However, they also provide an explanation for the increased infection rates (i.e. viral reactivation and urinary tract infection) seen in ruxolitinib-treated patients. Disclosures: Wolf: Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 9, No. 7 ( 2021-07), p. e002889-
    Abstract: Casitas B lymphoma-b (Cbl-b) is a central negative regulator of cytotoxic T and natural killer (NK) cells and functions as an intracellular checkpoint in cancer. In particular, Th9 cells support mast cell activation, promote dendritic cell recruitment, enhance the cytolytic function of cytotoxic T lymphocytes and NK cells, and directly kill tumor cells, thereby contributing to tumor immunity. However, the role of Cbl-b in the differentiation and antitumor function of Th9 cells is not sufficiently resolved. Methods Using Cblb −/− mice, we investigated the effect of knocking out Cblb on the differentiation process and function of different T helper cell subsets, focusing on regulatory T cell (Treg) and Th9 cells. We applied single-cell RNA (scRNA) sequencing of in vitro differentiated Th9 cells to understand how Cbl-b shapes the transcriptome and regulates the differentiation and function of Th9 cells. We transferred tumor-model antigen-specific Cblb −/− Th9 cells into melanoma-bearing mice and assessed tumor control in vivo . In addition, we blocked interleukin (IL)-9 in melanoma cell-exposed Cblb −/− mice to investigate the role of IL-9 in tumor immunity. Results Here, we provide experimental evidence that Cbl-b acts as a rheostat favoring Tregs at the expense of Th9 cell differentiation. Cblb −/− Th9 cells exert superior antitumor activity leading to improved melanoma control in vivo . Accordingly, blocking IL-9 in melanoma cell-exposed Cblb −/− mice reversed their tumor rejection phenotype. Furthermore, scRNA sequencing of in vitro differentiated Th9 cells from naïve T cells isolated from wildtype and Cblb −/− animals revealed a transcriptomic basis for increased Th9 cell differentiation. Conclusion We established IL-9 and Th9 cells as key antitumor executers in Cblb −/− animals. This knowledge may be helpful for the future improvement of adoptive T cell therapies in cancer.
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2021
    detail.hit.zdb_id: 2719863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Informa UK Limited ; 2016
    In:  OncoImmunology Vol. 5, No. 2 ( 2016-02), p. e1071009-
    In: OncoImmunology, Informa UK Limited, Vol. 5, No. 2 ( 2016-02), p. e1071009-
    Type of Medium: Online Resource
    ISSN: 2162-402X
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2016
    detail.hit.zdb_id: 2645309-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 122, No. 7 ( 2013-08-15), p. 1192-1202
    Abstract: The JAK-inhibitor ruxolitinib affects dendritic cell differentiation, phenotype, and function leading to impaired T-cell activation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular and Cellular Endocrinology, Elsevier BV, Vol. 451 ( 2017-08), p. 88-96
    Type of Medium: Online Resource
    ISSN: 0303-7207
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1500651-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 11 ( 2015-06-01), p. 2187-2199
    Abstract: Ruxolitinib is a small-molecule inhibitor of the JAK kinases, which has been approved for the treatment of myelofibrosis, a rare myeloproliferative neoplasm (MPN), but clinical trials are also being conducted in inflammatory-driven solid tumors. Increased infection rates have been reported in ruxolitinib-treated patients, and natural killer (NK) cells are immune effector cells known to eliminate both virus-infected and malignant cells. On this basis, we sought to compare the effects of JAK inhibition on human NK cells in a cohort of 28 MPN patients with or without ruxolitinib treatment and 24 healthy individuals. NK cell analyses included cell frequency, receptor expression, proliferation, immune synapse formation, and cytokine signaling. We found a reduction in NK cell numbers in ruxolitinib-treated patients that was linked to the appearance of clinically relevant infections. This reduction was likely due to impaired maturation of NK cells, as reflected by an increased ratio in immature to mature NK cells. Notably, the endogenous functional defect of NK cells in MPN was further aggravated by ruxolitinib treatment. In vitro data paralleled these in vivo results, showing a reduction in cytokine-induced NK cell activation. Further, reduced killing activity was associated with an impaired capacity to form lytic synapses with NK target cells. Taken together, our findings offer compelling evidence that ruxolitinib impairs NK cell function in MPN patients, offering an explanation for increased infection rates and possible long-term side effects associated with ruxolitinib treatment. Cancer Res; 75(11); 2187–99. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3169-3169
    Abstract: Introduction: Ruxolitinib (INCB018424) is the first JAK inhibitor approved for treatment of myelofibrosis (MF). Ruxolitinib-induced reduction of splenomegaly and symptoms control is linked to a substantial suppression of MF-associated circulating pro-inflammatory and pro-angiogenic cytokines. However, an increased rate of infections in ruxolitinib-exposed patients with MF was recently described. Natural killer (NK) cells are innate immune effector cells eliminating malignant or virus-infected cells. Thus, the aim of this project was to define in more detail the impact of JAK inhibition on NK cell biology both in vitro and in vivo. Methods: 28 patients with myeloproliferative neoplasms (MPN) with or without ruxolitinib therapy and 12 healthy donors were analyzed for NK cell frequency, NK receptor expression and function. Phenotypic and functional NK cell markers (e.g. CD11b, CD27, KIR, NKG2A, NKG2D, NKp46, CD16, granzyme B, and perforin) were analyzed by FACS. NK cell function was evaluated by classical killing assays upon stimulation with MHC class I-deficient target cells K562. Finally, a set of additional in vitro experiments (e.g. analysis of lytic synapse formation by FACS and confocal microscopy) were performed to define in more detail the characteristics and potential mechanisms of ruxolitinib-induced NK cell dysfunction. Results: In addition to our recent finding that ruxolitinib induces NK cell dysfunction in vitro (e.g. reduced killing, degranulation and IFN-γ production), we here demonstrate that NK cell proliferation and cytokine-induced receptor expression as well as cytokine signalling are drastically impaired by ruxolitinib. Interestingly, reduced killing is at least in part due to a reduced capacity to form a mature lytic synapse with target cells. The significance of the in vitrofindings is underscored by a dramatically reduced proportion and absolute number of NK cells in ruxolitinib-treated MPN patients when compared to treatment-naïve patients or to healthy controls (mean percentage of NK cell frequency: ruxolitinib-naïve MPN patients 12.63% ±1.81; healthy donors 13.51% ±1.44; ruxolitinib-treated patients 5.47% ±1.27). A systematic analysis of NK cell receptor expression revealed that the reduction of NK cells in ruxolitinib-exposed individuals is most likely due to an impaired NK cell differentiation and maturation process, as reflected by a significantly increased ratio of immature to mature NK cells. Finally, the endogenous functional NK cell defect in MPN is further aggravated by intake of the JAK inhibitor ruxolitinib. Conclusion: We here provide compelling in vitro and in vivo evidence that inhibition of the JAK/STAT-pathway by ruxolitinib exerts substantial effects on the NK cell compartment in MPN patients due to the inhibition of NK cell differentiation and NK cell key functions. Our data may help to better understand the increased rate of severe infections and complement recent reports on ruxolitinib-induced immune dysfunction. Disclosures Koschmieder: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel, Accomodation, Expenses Other. Brümmendorf:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Wolf:Novartis: Consultancy, Honoraria, Research Funding, Travel and Accommodation Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2222-2222
    Abstract: Introduction: Th9 cells are critical mediators of allergy and anti-cancer immunity. The E3 ubiquitin ligase Cbl-b modulates T cell activation via regulation of the T cell receptor (TCR) activation threshold as well as by inducing TGF-β sensitivity, which is a critical differentiation factor for Th9 differentiation. Even though some evidence shows that Cbl-b impairs Th9 differentiation by targeting IL-4 dependent STAT6 activation, a complete suppression of Th9 differentiation in the absence of both STAT6 and Cbl-b is not achieved, implying the involvement of additional mechanisms. In this study, we evaluate the role of Cbl-b in early stages of TGF-β dependent Th9 differentiation. Methods: Th9 cells were generated from WT and cblb-deficient naïve CD4+ T cells. After maximum 3 days in presence of IL-4, TGF-β and anti-IFN-γ antibodies, differentiation was determined by the quantification of cytokines, mainly IL-9, and that of the two required transcription factors for Th9 differentiation, namely IRF4 and PU.1. Microarray assay revealed gene candidates that were further validated by mRNA and protein expression analysis. The functional role of Cbl-b was tested in a Th9-mediated murine lung allergy model, in which mice were challenged by intratracheal injections of house dust mite (HDM) extracts. Results: cblb-deficient naïve T cells more efficiently differentiate into Th9 cells after 3 days in culture, express in parallel PU.1 more intensively compared to WT Th9 cells, while retaining similar expression levels of IRF4, another important Th9 differentiation factor. Increased IL-9 level is not based on cblb -deficient T cell hyperproliferation, as we show an increased IL-9 production per cell by using combination of CFSE with intracellular IL-9 staining. Microarray analysis revealed that RUNX1, a known transcriptional modulator of PU.1, is more rapidly down-regulated in cblb-deficient Th9 cells compared to WT Th9 cells. Accordingly, knocking down RUNX1 by siRNA in naïve CD4+ T cells and subsequently differentiating them into Th9 cells, also induces higher IL-9 expression at the mRNA and protein levels in RUNX1-depleted Th9 cells compared to control scrambled siRNA-nucleofected Th9 cells. In the HDM murine allergy model, cblb-deficient mice have a higher lung inflammation as mirrored by increased eosinophils in the BAL and in the lungs, as well as by increased IgE production in the blood. These are also paralleled by an increased IL-9 expression level in the lungs of the allergic cblb -deficient mice. Conclusions: Cbl-b critically limits Th9 differentiation and may thus be a potential target to modify Th9 cell generation in allergy or cancer. Future studies will validate the molecular link that exists between Cbl-b and the RUNX1-dependent IL-9 expression as well as the in vivo significance of increased Th9 cell differentiation in cblb-deficient animal models of lung inflammation and cancer. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: British Journal of Haematology, Wiley, Vol. 169, No. 6 ( 2015-06), p. 824-833
    Abstract: Ruxolitinib ( INCB 018424) is the first JAK 1/ JAK 2 inhibitor approved for treatment of myelofibrosis. JAK / STAT ‐signalling is known to be involved in the regulation of CD 4 + T cells, which critically orchestrate inflammatory responses. To better understand how ruxolitinib modulates CD 4 + T cell responses, we undertook an in‐depth analysis of CD 4 + T cell function upon ruxolitinib exposure. We observed a decrease in total CD 3 + cells after 3 weeks of ruxolitinib treatment in patients with myeloproliferative neoplasms. Moreover, we found that the number of regulatory T cells (Tregs), pro‐inflammatory T‐helper cell types 1 (Th1) and Th17 were reduced, which were validated by in vitro studies. In line with our in vitro data, we found that inflammatory cytokines [tumour necrosis factor‐α (TNF), interleukin ( IL )5, IL 6, IL 1B] were also downregulated in T cells from patients (all P   〈  0·05). Finally, we showed that ruxolitinib does not interfere with the T cell receptor signalling pathway, but impacts IL 2‐dependent STAT 5 activation. These data provide a rationale for testing JAK inhibitors in diseases triggered by hyperactive CD 4 + T cells, such as autoimmune diseases. In addition, they also provide a potential explanation for the increased infection rates (i.e. viral reactivation and urinary tract infection) seen in ruxolitinib‐treated patients.
    Type of Medium: Online Resource
    ISSN: 0007-1048 , 1365-2141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...