GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Earth's Future Vol. 10, No. 9 ( 2022-09)
    In: Earth's Future, American Geophysical Union (AGU), Vol. 10, No. 9 ( 2022-09)
    Abstract: No significant improvement were found in the simulation of sea surface salinity and liquid freshwater content from Coupled Model Intercomparison Project phase 5 to CMIP6 CMIP6 models project a 60% rise in the Arctic total liquid freshwater storage at the end of this century in the SSP5‐8.5 scenario Future Arctic freshwater sources are runoff, net precipitation, Bering Strait inflow and the Barents Sea Opening inflow (largest to least)
    Type of Medium: Online Resource
    ISSN: 2328-4277 , 2328-4277
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2746403-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Bulletin of the American Meteorological Society Vol. 101, No. 5 ( 2020-05), p. E650-E654
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 101, No. 5 ( 2020-05), p. E650-E654
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmosphere, MDPI AG, Vol. 9, No. 11 ( 2018-11-09), p. 437-
    Abstract: Although standard statistical methods and climate models can simulate and predict sea-ice changes well, it is still very hard to distinguish some direct and robust factors associated with sea-ice changes from its internal variability and other noises. Here, with long-term observations (38 years from 1980 to 2017), we apply the causal effect networks algorithm to explore the direct precursors of September Arctic sea-ice extent by adjusting the maximal lead time from one to eight months. For lead time of more than three months, June downward longwave radiation flux in the Canadian Arctic Archipelago is the only one precursor. However, for lead time of 1–3 months, August sea-ice concentration in Western Arctic represents the strongest positive correlation with September sea-ice extent, while August sea-ice concentration factors in other regions have weaker influences on the marginal seas. Other precursors include August wind anomalies in the lower latitudes accompanied with an Arctic high pressure anomaly, which induces the sea-ice loss along the Eurasian coast. These robust precursors can be used to improve the seasonal predictions of Arctic sea ice and evaluate the climate models.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Monthly Weather Review, American Meteorological Society, ( 2022-03-16)
    Abstract: Observations from uncrewed surface vehicles (saildrones) in the Bering, Chukchi, and Beaufort Seas during June – September 2019 were used to evaluate initial conditions and forecasts with lead times up to 10 days produced by eight operational numerical weather prediction centers. Prediction error behaviors in pressure and wind are found to be different from those in temperature and humidity. For example, errors in surface pressure were small in short-range ( 〈 6 days) forecasts, but they grew rapidly with increasing lead time beyond 6 days. Non-weighted multi-model means outperformed all individual models approaching a 10-day forecast lead time. In contrast, errors in surface air temperature and relative humidity could be large in initial conditions and remained large through 10-day forecasts without much growth, and non-weighted multi-model means did not outperform all individual models. These results following the tracks of the mobile platforms are consistent with those at a fixed location. Large errors in initial condition of sea surface temperature (SST) resulted in part from the unusual Arctic surface warming in 2019 not captured by data assimilation systems used for model initialization. These errors in SST led to large initial and prediction errors in surface air temperature. Our results suggest that improving predictions of surface conditions over the Arctic Ocean requires enhanced in situ observations and better data assimilation capability for more accurate initial conditions as well as better model physics. Numerical predictions of Arctic atmospheric conditions may continue to suffer from large errors if they do not fully capture the large SST anomalies related to Arctic warming.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Acta Oceanologica Sinica Vol. 39, No. 5 ( 2020-05), p. 11-25
    In: Acta Oceanologica Sinica, Springer Science and Business Media LLC, Vol. 39, No. 5 ( 2020-05), p. 11-25
    Type of Medium: Online Resource
    ISSN: 0253-505X , 1869-1099
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2421047-X
    detail.hit.zdb_id: 61207-8
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Monthly Weather Review Vol. 145, No. 3 ( 2017-03), p. 773-782
    In: Monthly Weather Review, American Meteorological Society, Vol. 145, No. 3 ( 2017-03), p. 773-782
    Abstract: The impacts of model physics and initial sea ice thickness on seasonal forecasts of surface energy budget and air temperature in the Arctic during summer were investigated based on Climate Forecast System, version 2 (CFSv2), simulations. The model physics changes include the enabling of a marine stratus cloud scheme and the removal of the artificial upper limit on the bottom heat flux from ocean to sea ice. The impact of initial sea ice thickness was examined by initializing the model with relatively realistic sea ice thickness generated by the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Model outputs were compared to that from a control run that did not impose physics changes and used Climate Forecast System Reanalysis (CFSR) sea ice thickness. After applying the physics modification to either sea ice thickness initialization, the simulated total cloud cover more closely resembled the observed monthly variations of total cloud cover except for the midsummer reduction. Over the Chukchi–Bering Seas, the model physics modification reduced the seasonal forecast bias in surface air temperature by 24%. However, the use of initial PIOMAS sea ice thickness alone worsened the surface air temperature predictions. The experiment with physics modifications and initial PIOMAS sea ice thickness achieves the best surface air temperature improvement over the Chukchi–Bering Seas where the area-weighted forecast bias was reduced by 71% from 1.05 K down to −0.3 K compared with the control run. This study supports other results that surface temperatures and sea ice characteristics are highly sensitive to the Arctic cloud and radiation formulations in models and need priority in model formulation and validation.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    EWA Publishing ; 2023
    In:  Applied and Computational Engineering Vol. 2, No. 1 ( 2023-3-22), p. 899-913
    In: Applied and Computational Engineering, EWA Publishing, Vol. 2, No. 1 ( 2023-3-22), p. 899-913
    Abstract: Myers-Briggs Type Indicator (MBTI) is currently one of the most widely used personality testing tools. MBTI has important value in the field of psychology and career planning. In this essay, a system that can predict people's MBTI features based on their social media posts is proposed. The dataset used in this paper is derived from the online posts of peo-ple with different MBTI personality types. After these posts are preprocessed, they will be analyzed using methods related to decision trees such as random forest and XGBoost. The results from these methods will be compared to other common methods, such as neural networks. The essay measures the ability of the different methods by using the classifying accuracy in the four different dimensions of MBTI. The decision-tree-related methods achieved generally higher accuracy in the task than other types of methods such as neural networks. Methods such as random forest achieved accuracy over 85% on the second la-bel (N/S), and at least 60% accuracy on other labels.
    Type of Medium: Online Resource
    ISSN: 2755-2721 , 2755-273X
    Language: Unknown
    Publisher: EWA Publishing
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Chemical Engineering Journal, Elsevier BV, Vol. 452 ( 2023-01), p. 138992-
    Type of Medium: Online Resource
    ISSN: 1385-8947
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 241367-X
    detail.hit.zdb_id: 2012137-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Atmospheres Vol. 104, No. D16 ( 1999-08-27), p. 19399-19414
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 104, No. D16 ( 1999-08-27), p. 19399-19414
    Abstract: A variable resolution global model is used to simulate a 13 day period of heavy rainfall during the 1993 Mississippi River basin floods. The model allows interaction between the atmosphere of the inner, fine resolution region that covers most of the United States and the outer global domain. We describe the impact of flow generated by latent heating over the central United States and its interaction with the global atmosphere. For this case, global constraints on the divergent flow impose substantial modifications upon the rainfall evolution within the central region. The most accurate simulations of rainfall occur when both local divergence and local thermal modifications interact with their global counterparts. The moisture budget is strongly influenced by the imposition of both divergence and thermal fields, and the temporal and spatial distribution of horizontal moisture flux and rainfall change substantially with the degree of outer state prespecification.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...