GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: The FASEB Journal, Wiley, Vol. 20, No. 7 ( 2006-05), p. 950-952
    Type of Medium: Online Resource
    ISSN: 0892-6638 , 1530-6860
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 1468876-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Hepato-Biliary-Pancreatic Surgery, Springer Science and Business Media LLC, Vol. 1, No. 1 ( 1993-2), p. 42-104
    Type of Medium: Online Resource
    ISSN: 0944-1166 , 1436-0691
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1993
    detail.hit.zdb_id: 2536390-6
    detail.hit.zdb_id: 1473162-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: European Journal of Haematology, Wiley, Vol. 98, No. 5 ( 2017-05), p. 501-507
    Abstract: The efficacy of mogamulizumab in adult T‐cell leukemia/lymphoma ( ATLL ) was reported in a previous phase 2 study. Compared with patients in clinical trials, however, most patients in real‐life settings have demonstrated worse outcomes. Method We retrospectively analyzed 96 patients with relapsed/refractory ATLL who received mogamulizumab treatment. Results Relapsed/refractory ATLL patients with a median age of 70 years received a median of five courses of mogamulizumab. Hematologic toxicity and skin rash were the most common adverse events, and both were manageable. Of 96 patients, 87 were evaluable for efficacy. The overall response rate was 36%, and the median progression‐free survival ( PFS ) and overall survival ( OS ) from the start of mogamulizumab therapy were 1.8 and 4.0 months, respectively. Of the original 96 patients, only 25 fulfilled the inclusion criteria of the phase 2 study. Those who met the criteria demonstrated longer median PFS and OS durations of 2.7 and 8.5 months, respectively. The median OS from diagnosis in relapsed/refractory ATLL patients receiving mogamulizumab was 12 months, longer than the 5.8 months in a historical cohort without mogamulizumab. Conclusion In clinical practice, mogamulizumab exhibited antitumor activity in patients with relapsed/refractory ATLL , with an acceptable toxicity profile. Mogamulizumab therapy improved the OS of ATLL patients.
    Type of Medium: Online Resource
    ISSN: 0902-4441 , 1600-0609
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2027114-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Japanese Society for Lymphoreticular Tissue Research ; 2015
    In:  Journal of Clinical and Experimental Hematopathology Vol. 55, No. 3 ( 2015), p. 145-149
    In: Journal of Clinical and Experimental Hematopathology, Japanese Society for Lymphoreticular Tissue Research, Vol. 55, No. 3 ( 2015), p. 145-149
    Type of Medium: Online Resource
    ISSN: 1346-4280 , 1880-9952
    Language: English
    Publisher: Japanese Society for Lymphoreticular Tissue Research
    Publication Date: 2015
    detail.hit.zdb_id: 2395568-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Japanese Society for Lymphoreticular Tissue Research ; 2017
    In:  Journal of Clinical and Experimental Hematopathology Vol. 56, No. 3 ( 2017), p. 145-149
    In: Journal of Clinical and Experimental Hematopathology, Japanese Society for Lymphoreticular Tissue Research, Vol. 56, No. 3 ( 2017), p. 145-149
    Type of Medium: Online Resource
    ISSN: 1346-4280 , 1880-9952
    Language: English
    Publisher: Japanese Society for Lymphoreticular Tissue Research
    Publication Date: 2017
    detail.hit.zdb_id: 2395568-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 162-162
    Abstract: In primary myelofibrosis patients, somatic mutations such as JAK2V617F(JAKVF) and MPLW515 that activate JAK-STAT signaling are often seen. Small-molecule JAK2 inhibitors are effective for organomegaly and constitutional symptoms, but the drugs have little effect on BM fibrosis. To clarify the mechanism by which MPN cells with JAK2 mutations cause BM fibrosis, we compared the gene expression patterns of Lin−Sca1+ BM cells in JAK2VF transgenic mice (JAK2VF-TG), which develop myelofibrosis (MF), with that in WT mice. We found that TGFb1 and HOXB4, the target genes of transcription factor USF1 were highly expressed. TGFβ1, which is secreted by hematopoietic cells, is essential for fibrotic development in a murine model of MF (Chagraoui et al. Blood 2002), and increased expression of HOXB4 enhances human megakaryocytic development (Zhong et al. BBRC 2010). To investigate the mechanism of the high expression of these genes downstream of JAK2 signaling, USF1 and a cytokine receptor gene (MPL, EPOR or CSF3R) were co-transfected into 293T cells along with either a TGF-β1/HOXB4 promoter-driven or a STAT5 response element-driven luciferase reporter. Stimulation of MPL with TPO enhanced USF1 transcriptional activity about 3 fold, but stimulation of EPOR with EPO or of CSF3R with G-CSF did not change this activity. However, stimulation with any of the 3 types of cytokines enhanced STAT5 transcriptional activity. JAK2VF upregulated USF1 and STAT5 much more highly than JAK2WT without TPO stimulation. This USF1 upregulation specifically to TPO/MPL signaling was suppressed by a dominant negative mutant of USF1, JAK2 inhibitors (AG490, NS-018) or MEK inhibitors (U0126, PD325901). Inhibition of PI3K or p38MAPK did not affect the USF1 activation. Co-treatment with JAK2 and MEK inhibitors showed a synergistic effect in blocking both USF1 upregulation and STAT5 activation induced by JAK2VF. Next, we tested the MEK inhibitor, PD325901, in combination with the JAK2 inhibitor, NS-018, in the JAK2VF-TG mice. After disease was established 12 weeks after birth, JAK2VF-TG mice were divided into the following 4 groups: vehicle control; PD325901 monotherapy; NS-018 monotherapy; and combined therapy. PD325901 (5 mg/kg) and NS-018 (50 mg/kg) were orally administered once and twice daily, respectively. After 12 weeks of treatment, we evaluated the effect on BM fibrosis. The grading of MF in each group (n = 5-6) was as follows: vehicle control (MF-0: 0/6, MF-1 or 2: 6/6); PD325901 monotherapy (MF-0: 4/5, MF-1 or 2: 1/5); NS-018 monotherapy (MF-0: 0/6, MF-1 or 2: 6/6); and combined therapy (MF-0: 3/6, MF-1 or 2: 3/6). In the 2 groups treated with PD325901, 50~80% of mice showed MF-0. In contrast, in vehicle-treated or NS-018 monotherapy groups, all mice showed MF-1 or 2. Consistent with the MF grading, BM cellularity was significantly increased in the PD325901 monotherapy or combined therapy groups compared with the vehicle-treated group. A significant reduction was seen in the plasma TGFβ1 concentration in the PD325901 monotherapy and combined therapy groups compared with the vehicle-treated group (9.7 ng/ml, 8.1 ng/ml vs. 18.2 ng/ml, respectively). The TGFβ1 concentration in the extracellular fluid of BM (Wagner et al blood 2007) was also significantly reduced (5.6 ng/ml, 6.8 ng/ml vs. 9.1 ng/ml, respectively). BM cellularity and the TGFβ1 concentration in the NS-018 monotherapy group were comparable to those in the vehicle-treated group. Interestingly, megakaryocytes in the PD325901 monotherapy and combined therapy groups were decreased in number and were smaller than those in the vehicle-treated or NS-018 monotherapy groups. Regarding the effect on splenomegaly, spleen weight was significantly reduced in the NS-018 monotherapy and combined therapy groups compared with the vehicle-treated group (0.83 g, 0.69 g vs. 1.18 g, respectively). PD325901 monotherapy had little effect on splenomegaly. It is known that MEK-ERK1/2 pathway is critical in normal megakaryocyte development. In vitro data suggest that JAK2VF activates this pathway downstream of MPL and may contribute to TGFβ1 overproduction and dysmegakaryopoiesis, causing BM fibrosis via transcriptional enhancement of USF1. In vivo data suggest that MEK inhibition has the potential to improve dysmegakaryopoiesis and BM fibrosis. The combined therapy of JAK2 inhibitors with MEK inhibitors might be a promising therapy for improving both splenomegaly and BM fibrosis. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 2585-2585
    Abstract: Abstract 2585 Several lines of reports have suggested that mature magakaryocytes (MKs) form long cytoplasmic processes containing platelets (PLT) organelles from which PLT break off due to blood flow pressures in bone marrow (BM). These cytoplasmic processes were termed ‘proplatelet'. MKs differentiated from hematopoietic stem cells by in vitro culture also develop similar processes, referred to as ‘proplatelet-like formation (PPF)'. It has been already reported that fibronectin (FN) and phorbol 12-myristate 13-acetate (PMA) are essential for inducing PPF in MKs using CHRF-288 human megakaryoblastic cell line (Jiang F et al. Blood 99, 2002). FN plays important roles in megakaryocytopoiesis through the FN-receptors. The role of adhesive interactions with FN in BM stroma and FN-receptor beta1-integrins has been reported in proliferation, differentiation and maintenance of megakaryocytic lineage cells. However, the substantial role of these FN-receptors and their functional assignment in PPF are not yet fully understood. We first investigated the effects of beta1-integrins on PPF using CHRF-288 cells, which express alpha4beta1-integrin (VLA-4) and alpha5beta1-integrin (VLA-5) as FN-receptors. When the cells were cultured on FN for 3 days, PMA prompted PPF in a dose-dependent manner. While nearly 15% of the cells displayed PPF with PMA (100 ng/mL), no cells cultured with FN alone or PMA alone exhibited PPF. PPF induced by FN plus PMA combination (FN/PMA) was abrogated by addition of anti-alpha4-integrin monoclonal antibodies (mAb) plus anti-alpha5-integrin mAb combination, but not by the addition of anti-alpha4-integrin mAb alone or anti-alpha5-integrin mAb alone. Thus, the adhesive interaction with FN via VLA-4 and VLA-5 were responsible for PPF. We next investigated the effect of TNIIIA2, which enhances the adhesive interaction between FN and beta1-integrins, in PPF induced by FN/PMA. TNIIIA2 (RSTDLPGLKAATHYTITIRGVC) is a 22-mer peptide derived from the 14th FN type III-like (FNIII) repeat in tenascin (TN)-C molecule which we found recently, and it induces the conformational change necessary for functional activation of beta1-integrins (Fukai F et al. J Biol Chem 282, 2007; J Biol Chem 284, 2009). The PPF induced by FN/PMA was highly accelerated when CHRF-288 cells were enforced adhering to FN by treatment with TNIIIA2 (25 microg/mL). More than 45% of the cells displayed PPF with FN/PMA plus TNIIIA2 combination (FN/PMA/TNIIIA2). Blocking experiments using anti-beta1-integrin mAbs indicated that adhesive interaction with FN via VLA-4 and VLA-5 was also responsible for acceleration of PPF induced by FN/PMA/TNIIIA2. On the other hand, control peptide, TNIIIA2mutant (RSTDLPGLKAATHYTATARGVC) did not accelerate PPF induced by PMA/FN. The calculated yield of the cells with PPF induced by FN/PMA/TNIIIA2 was 2.5-fold more than that induced by FN/PMA. We have previously established ‘a three-phase serum-free culture system' to generate large amount of PLT from human cord blood CD34+ cells (Matsunaga T et al. Stem cells 24, 2006). A study on the effect of TNIIIA2 on our ‘three-phase serum-free culture system' is now underway. Finally, we investigated signal transduction pathways responsible for PPF induced by FN/PMA. While FN/PMA induced activation of extracellular signal-regulated protein kinase 1 (ERK1/2), FN alone or PMA alone did not induce ERK1/2 activation. The results was in accordance with the data previously reported by Jiang et at (Blood 99, 2002). TNIIIA2 strongly enhanced activation of ERK1/2 by FN/PMA. However, c-Jun amino-terminal kinase 1 (JNK1), p38 and phosphoinositide-3 kinase (PI3K)/Akt were not stimulated by FN/PMA even in the presence of TNIIIA2. Thus, enhanced activation of ERK1/2 by FN/PMA/TNIIIA2 was responsible for acceleration of PPF by FN/PMA. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 117, No. 25 ( 2011-06-23), p. 6866-6875
    Abstract: The activating mutations in JAK2 (including JAK2V617F) that have been described in patients with myeloproliferative neoplasms (MPNs) are linked directly to MPN pathogenesis. We developed R723, an orally bioavailable small molecule that inhibits JAK2 activity in vitro by 50% at a concentration of 2nM, while having minimal effects on JAK3, TYK2, and JAK1 activity. R723 inhibited cytokine-independent CFU-E growth and constitutive activation of STAT5 in primary hematopoietic cells expressing JAK2V617F. In an anemia mouse model induced by phenylhydrazine, R723 inhibited erythropoiesis. In a leukemia mouse model using Ba/F3 cells expressing JAK2V617F, R723 treatment prolonged survival and decreased tumor burden. In V617F-transgenic mice that closely mimic human primary myelofibrosis, R723 treatment improved survival, hepatosplenomegaly, leukocytosis, and thrombocytosis. R723 preferentially targeted the JAK2-dependent pathway rather than the JAK1- and JAK3-dependent pathways in vivo, and its effects on T and B lymphocytes were mild compared with its effects on myeloid cells. Our preclinical data indicate that R723 has a favorable safety profile and the potential to become an efficacious treatment for patients with JAK2V617F-positive MPNs.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1921-1921
    Abstract: Abstract 1921 Poster Board I-944 Background: Janus kinase 1 (JAK1) plays a critical role in lymphocyte proliferation and differentiation. Somatic JAK1 mutations are found in 18% of adult precursor T acute lymphoblastic leukemias (T-ALL). Some of the mutations were shown to induce the phosphorylation of JAK1 and STAT5 and lead to cytokine-independent proliferation. These data suggest that dysregulation of JAK1 can be involved in the development or progression of T-ALL (Flex et al. J Exp Med. 2008;205:751-758). Adult T-cell leukemia/lymphoma (ATLL) is a type of T-cell neoplasm, and the activation of JAK/STAT is sometimes observed in the tumor cells. Therefore, we investigated JAK1 mutations in ATLL patients. Patients and methods: Twenty Japanese ATLL patients whose percentage of peripheral abnormal lymphocytes was greater than 30% total cell count were sequentially enrolled into the study from 2000 to 2007. Diagnosis of ATLL was made on the basis of clinical features and laboratory characteristics. All cases tested positive for the serum anti-HTLV-1 antibody. The diagnosis was confirmed by observing monoclonal insertion of the HTLV-1 viral genome into leukemia cells by Southern blot hybridization. Peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved at -80°C. These PBMCs were thawed and genomic DNA was isolated using standard protocol. The entire coding sequence of the JAK1 gene (exons 2 through 25) was amplified by the polymerase chain reaction (PCR) method. The sequence of PCR primers were kindly provided by Dr. Marco Tartaglia (Istituto Superiore di Sanità, Roma, PhD). The nucleotide sequences were determined by fluorescent dye chemistry sequencing and analyzed by sequencing analysis software. By referencing the assembled sequence in the Ensembl genome database, the presence of homozygous mutations was first checked and then candidates for heterozygous mutations or single nucleotide polypeptides (SNPs) on each allele were screened by comparing the ratio of different bases calculated with the height of the peaks seen from sequencing to the reference genome when the ratio was between 0.15 and 1.0. Result: The percentage of abnormal lymphocytes ranged from 30-90%, and the mean value was 55.4%. The mean value of WBC and lymphocyte number was 40.5×109/L and 33.4×109/L, respectively. The mean value of LDH, Ca2+ or sIL-2R was 609 IU/L, 11.4 mg/dL, or 54748 U/mL, respectively. According to Shimoyama criteria (Shimoyama et al. Br J Haematol. 1991;79:428-437), 19 cases were diagnosed as acute-type ATLL, and one case was diagnosed as chronic-type ATLL. The surface markers of all but one abnormal PBMC were CD3+CD4+CD8-CD25+. In that one exception, loss of CD4 expression was observed. We examined the entire coding sequence of the JAK1 gene in 20 ATLL patients and identified no nonsynonymous or nonsense mutations and five types of silent substitutions in 12 cases. All silent substitutions were synonymous SNPs, as determined from referencing the base sequence in the Ensembl genome database. In the ATLL patients examined, the genotype frequency (%) is c546-AA/AG/GG, 97.5/2.5/0; c1590-CC/CT/TT, 97.5/2.5/0; c2049-CC/CT/TT, 50/50/0; c2097-CC/CG/GG, 95/5/0; c2199-AA/AG/GG, 60/40/0. There is no statistical difference in genotype frequency pattern of these SNPs, between the Japanese ATLL patients examined and the general Asian population on the Ensembl database. Conclusion: Mutations in the coding region of JAK1 do not associate with either activation of the JAK/STAT pathway or leukemogenesis in ATLL. We only examined the coding region of JAK1, and the regulatory region of JAK1 remains to be investigated. Further investigation including downstream signaling molecules and inhibitory molecules in the JAK/STAT signaling pathway is necessary to clarify the mechanism contributing to the leukemogenesis of ATLL. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 5244-5244
    Abstract: Leukocyte alkaline phosphatase (LAP) enzymatic activity is a marker of the last stages of myeloid differentiation. The level of LAP is quantitated as the LAP score. Estimation of the LAP score has been useful for distinguishing chronic myelogenous leukemia (CML) from BCR-ABL–negative chronic myeloproliferative disorders (MPDs) and neutrophilic reactions in severe infections. CML patients usually have a low LAP score, whereas elevated LAP scores are seen in patients with polycythemia vera (PV), primary myelofibrosis (PMF), and leukocytosis caused by infections. An acquired Jak2 V617F mutation is seen in approximately 95% of patients with PV and in about 50% of patients with essential thrombocythemia or PMF. It has been shown that Jak2 V617F mutation induced constitutive activation of the JAK-STAT signaling pathway. We speculated that an elevated LAP score might be caused due to activation of JAK-STAT signaling through a Jak2 V617F mutation, and conducted this study to address this question. We analyzed the LAP scores in Jak2 V617F-positive and -negative MPD patients. Jak2 V617F-positive MPD patients had higher LAP scores than Jak2 V617F-negative patients. Moreover, patients carrying homozygous mutations had higher LAP scores than patients with heterozygous mutations. AG490, the Jak2 inhibitor, was shown to significantly decrease the LAP expression in neutrophils of Jak2 V617F-positive patients. We lentivirally transfected the acute promyelocytic leukemia cell line NB4 with the Jak2 V617F mutation and wild-type Jak2 V617F. The expression level of Jak2 was not significantly different between the Jak2 V617F mutation and wild-type Jak2 V617F. We then examined the LAP scores of transfected NB4 cells after these cells were differentiated by all-trans retinoic acid and granulocyte colony stimulating factor. It was observed that the Jak2 V617F mutation and not the wild-type Jak2 induced elevated LAP scores. Furthermore, we showed that Jak2 followed the MAP kinase pathway and not the PI3 kinase pathway, as a downstream signaling pathway to elevate the LAP scores using MEK 1/2 (U0126) and PI3 kinase (LY294002) inhibitors. In conclusion, we obtained direct evidence that Jak2 V617F mutation induces elevated LAP scores via the MAP kinase pathway.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...