GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 96, No. 8 ( 2015-08-01), p. 1257-1279
    Abstract: Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 81, No. 4 ( 2000-04), p. 719-743
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2000
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Progress in Oceanography, Elsevier BV, Vol. 173 ( 2019-04), p. 256-350
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Physical Oceanography Vol. 35, No. 2 ( 2005-02-01), p. 232-254
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 35, No. 2 ( 2005-02-01), p. 232-254
    Abstract: To understand the characteristics of sea surface height signatures of tropical instability waves (TIWs), a linearized model of the central Pacific Ocean was developed in which the vertical structures of the state variables are projected onto a set of orthogonal baroclinic eigenvectors. In lieu of in situ current measurements with adequate spatial and temporal resolution, the mean current structure used in the model was obtained from the Parallel Ocean Climate Model (POCM). The TIWs in the linear model have cross-equatorial structure and wavenumber–frequency content similar to the TIWs in POCM, even when the vertical structures of the state variables are projected onto only the first two orthogonal baroclinic eigenvectors. Because this model is able to reproduce TIWs with relatively simple vertical structure, it is possible to examine the mechanism for the formation of TIWs. TIWs are shown to form from a resonance between two equatorial Rossby waves as the strength of the background currents is slowly increased.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Physical Oceanography Vol. 45, No. 1 ( 2015-01), p. 104-132
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 45, No. 1 ( 2015-01), p. 104-132
    Abstract: Three mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies are investigated. The first arises from the surface stress that occurs because of differences between surface wind and ocean velocities, resulting in Ekman upwelling and downwelling in the cores of anticyclones and cyclones, respectively. The second mechanism arises from the interaction of the surface stress with the surface current vorticity gradient, resulting in dipoles of Ekman upwelling and downwelling. The third mechanism arises from eddy-induced spatial variability of sea surface temperature (SST), which generates a curl of the stress and therefore Ekman pumping in regions of crosswind SST gradients. The spatial structures and relative magnitudes of the three contributions to eddy-induced Ekman pumping are investigated by collocating satellite-based measurements of SST, geostrophic velocity, and surface winds to the interiors of eddies identified from their sea surface height signatures. On average, eddy-induced Ekman pumping velocities approach O (10) cm day −1 . SST-induced Ekman pumping is usually secondary to the two current-induced mechanisms for Ekman pumping. Notable exceptions are the midlatitude extensions of western boundary currents and the Antarctic Circumpolar Current, where SST gradients are strong and all three mechanisms for eddy-induced Ekman pumping are comparable in magnitude. Because the polarity of current-induced curl of the surface stress opposes that of the eddy, the associated Ekman pumping attenuates the eddies. The decay time scale of this attenuation is proportional to the vertical scale of the eddy and inversely proportional to the wind speed. For typical values of these parameters, the decay time scale is about 1.3 yr.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2002
    In:  Journal of Physical Oceanography Vol. 32, No. 7 ( 2002-07), p. 2194-2203
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 32, No. 7 ( 2002-07), p. 2194-2203
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2002
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 1988
    In:  Journal of Physical Oceanography Vol. 18, No. 10 ( 1988-10), p. 1372-1383
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 18, No. 10 ( 1988-10), p. 1372-1383
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1988
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Monthly Weather Review Vol. 139, No. 3 ( 2011-03-01), p. 809-829
    In: Monthly Weather Review, American Meteorological Society, Vol. 139, No. 3 ( 2011-03-01), p. 809-829
    Abstract: The study analyzes atmospheric circulation around an idealized coastal cape during summertime upwelling-favorable wind conditions simulated by a mesoscale coupled ocean–atmosphere model. The domain resembles an eastern ocean boundary with a single cape protruding into the ocean in the center of a coastline. The model predicts the formation of an orographic wind intensification area on the lee side of the cape, extending a few hundred kilometers downstream and seaward. Imposed initial conditions do not contain a low-level temperature inversion, which nevertheless forms on the lee side of the cape during the simulation, and which is accompanied by high Froude numbers diagnosed in that area, suggesting the presence of the supercritical flow. Formation of such an inversion is likely caused by average easterly winds resulting on the lee side that bring warm air masses originating over land, as well as by air warming during adiabatic descent on the lee side of the topographic obstacle. Mountain leeside dynamics modulated by differential diurnal heating is thus suggested to dominate the wind regime in the studied case. The location of this wind feature and its strong diurnal variations correlate well with the development and evolution of the localized lee side trough over the coastal ocean. The vertical extent of the leeside trough is limited by the subsidence inversion aloft. Diurnal modulations of the ocean sea surface temperatures (SSTs) and surface depth-averaged ocean current on the lee side of the cape are found to strongly correlate with wind stress variations over the same area. Wind-driven coastal upwelling develops during the simulation and extends offshore about 50 km upwind of the cape. It widens twice as much on the lee side of the cape, where the coldest nearshore SSTs are found. The average wind stress–SST coupling in the 100-km coastal zone is strong for the region upwind of the cape, but is notably weaker for the downwind region, estimated from the 10-day-average fields. The study findings demonstrate that orographic and diurnal modulations of the near-surface atmospheric flow on the lee side of the cape notably affect the air–sea coupling on various temporal scales: weaker wind stress–SST coupling results for the long-term averages, while strong correlations are found on the diurnal scale.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 1987
    In:  Journal of Physical Oceanography Vol. 17, No. 11 ( 1987-11), p. 2043-2064
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 17, No. 11 ( 1987-11), p. 2043-2064
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1987
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Physical Oceanography Vol. 41, No. 6 ( 2011-06-01), p. 1077-1101
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 41, No. 6 ( 2011-06-01), p. 1077-1101
    Abstract: Previously unaddressed aspects of how equatorial currents affect long Rossby wave phase speeds are investigated using solutions of the shallow-water equations linearized about quasi-realistic currents. Modification of the background potential vorticity (PV) gradient by curvature in the narrow equatorial currents is shown to play a role comparable to the Doppler shift emphasized by previous authors. The important variables are the meridional projections of mean-current features onto relevant aspects of the wave field. As previously shown, Doppler shifting of long Rossby waves is determined by the projection of the mean currents onto the wave’s squared zonal-velocity and pressure fields. PV-gradient modification matters only to the extent that it projects onto the wave field’s squared meridional velocity. Because the zeros of an equatorial wave’s meridional velocity are staggered relative to those of the zonal velocity and pressure, and because the meridional scales of the equatorial currents are similar to those of the low-mode Rossby waves, different parts of the current system dominate the advective and PV-gradient modification effects on a single mode. Since the equatorial symmetry of classical equatorial waves alternates between symmetric and antisymmetric with increasing meridional mode number, the currents produce opposite effects on adjacent modes. Meridional mode 1 is slowed primarily by a combination of eastward advection by the Equatorial Undercurrent (EUC) and the PV-gradient decrease at the peaks of the South Equatorial Current (SEC). The mode-2 phase speed, in contrast, is increased primarily by a combination of westward advection by the SEC and the PV-gradient increase at the core of the EUC. Perturbation solutions are carried to second order in ε, the Rossby number of the mean current, and it is shown that this is necessary to capture the full effect of quasi-realistic current systems, which are asymmetric about the equator. Equatorially symmetric components of the current system affect the phase speed at O(ε), but antisymmetric components of the currents and distortions of the wave structures by the currents do not influence the phase speed until O(ε2).
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...