GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Journal of Clinical Epidemiology, Elsevier BV, Vol. 106 ( 2019-02), p. 32-40
    Type of Medium: Online Resource
    ISSN: 0895-4356
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1500490-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2011
    In:  Carbohydrate Polymers Vol. 85, No. 1 ( 2011-4), p. 164-172
    In: Carbohydrate Polymers, Elsevier BV, Vol. 85, No. 1 ( 2011-4), p. 164-172
    Type of Medium: Online Resource
    ISSN: 0144-8617
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 1501516-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 84, No. 21 ( 2010-11), p. 10991-10998
    Abstract: Hepatitis C virus (HCV) establishes chronic infection in a significant number of infected humans, although the mechanisms for chronicity remain largely unknown. We have previously shown that HCV infection in immortalized human hepatocytes (IHH) induces beta interferon (IFN-β) expression (T. Kanda, R. Steele, R. Ray, and R. B. Ray, J. Virol. 81: 12375-12381, 2007). However, the regulation of the downstream signaling pathway for IFN-α production by HCV is not clearly understood. In this study, the regulation of the IFN signaling pathway following HCV genotype 1a (clone H77) or genotype 2a (clone JFH1) infection of IHH was examined. HCV infection upregulated expression of total STAT1 but failed to induce phosphorylation and efficient nuclear translocation. Subsequent study revealed that HCV infection induces IFN-stimulated response element activation, as evidenced by upregulation of 2′,5′-oligoadenylate synthetase 1. However, nuclear translocation of IRF-7 was impaired following HCV infection. In HCV-infected IHH, IFN-α expression initially increased (up to 24 h) and then decreased at later time points, and IFN-α-inducible protein 27 was not induced. Interestingly, HCV infection blocked IRF-7 nuclear translocation upon poly(I-C) or IFN-α treatment of IHH. Together, our data suggest that HCV infection enhances STAT1 expression but impairs nuclear translocation of IRF-7 and its downstream molecules. These impairments in the IFN-α signaling pathway may, in part, be responsible for establishment of chronic HCV infection.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Virology, American Society for Microbiology, Vol. 80, No. 9 ( 2006-05), p. 4372-4379
    Abstract: We have previously shown that hepatitis C virus (HCV) core protein modulates multiple cellular processes, including those that inhibit tumor necrosis factor alpha (TNF-α)-mediated apoptosis. In this study, we have investigated the signaling mechanism for inhibition of TNF-α-mediated apoptosis in human hepatoma (HepG2) cells expressing core protein alone or in context with other HCV proteins. Activation of caspase-3 and the cleavage of DNA repair enzyme poly(ADP-ribose) polymerase were inhibited upon TNF-α exposure in HCV core protein-expressing HepG2 cells. In vivo protein-protein interaction studies displayed an association between TNF receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD), suggesting that the core protein does not perturb this interaction. A coimmunoprecipitation assay also suggested that HCV core protein does not interfere with the TRADD-Fas-associated death domain protein (FADD)-procaspase-8 interaction. Further studies indicated that HCV core protein expression inhibits caspase-8 activation by sustaining the expression of cellular FLICE (FADD-like interleukin-1β-converting enzyme)-like inhibitory protein (c-FLIP). Similar observations were also noted upon expression of core protein in context to other HCV proteins expressed from HCV full-length plasmid DNA or a replicon. A decrease in endogenous c-FLIP by specific small interfering RNA induced TNF-α-mediated apoptotic cell death and caspase-8 activation. Taken together, our results suggested that the TNF-α-induced apoptotic pathway is inhibited by a sustained c-FLIP expression associated with the expression of HCV core protein, which may play a role in HCV-mediated pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Virology, American Society for Microbiology, Vol. 82, No. 6 ( 2008-03-15), p. 2606-2612
    Abstract: Chronic hepatitis C virus (HCV) infection has a significantly increased prevalence of type 2 diabetes mellitus (T2DM). Insulin resistance is a critical component of T2DM pathogenesis. Several mechanisms are likely to be involved in the pathogenesis of HCV-related insulin resistance. Since we and others have previously observed that HCV core protein activates c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase, we examined the contribution of these pathways to insulin resistance in hepatocytes. Our experimental findings suggest that HCV core protein alone or in the presence of other viral proteins increases Ser 312 phosphorylation of the insulin receptor substrate-1 (IRS-1). Hepatocytes infected with cell culture-grown HCV genotype 1a or 2a displayed a significant increase in the Ser 473 phosphorylation status of the Ser/Thr kinase protein kinase B (Akt/PKB), while Thr 308 phosphorylation was not significantly altered. HCV core protein-mediated Ser 312 phosphorylation of IRS-1 was inhibited by JNK (SP600125) and phosphatidylinositol-3 kinase (LY294002) inhibitors. A functional assay also suggested that hepatocytes expressing HCV core protein alone or infected with cell culture-grown HCV exhibited a suppression of 2-deoxy- d -[ 3 H]glucose uptake. Inhibition of the JNK signaling pathway significantly restored glucose uptake despite HCV core expression in hepatocytes. Taken together, our results demonstrated that HCV core protein increases IRS-1 phosphorylation at Ser 312 which may contribute in part to the mechanism of insulin resistance.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Journal of Virology Vol. 82, No. 22 ( 2008-11-15), p. 11066-11072
    In: Journal of Virology, American Society for Microbiology, Vol. 82, No. 22 ( 2008-11-15), p. 11066-11072
    Abstract: Hepatitis C virus (HCV) infection is frequently associated with the development of hepatocellular carcinoma (HCC), which is one of the male-dominant diseases. Androgen signaling in liver may be related to carcinogenesis. In this study, we investigated whether HCV proteins cross talk with the androgen receptor (AR) signaling pathway for promotion of carcinogenesis. We have demonstrated that HCV core protein alone or in context with other HCV proteins enhances AR-mediated transcriptional activity and further augments in the presence of androgen. Subsequent study suggested that HCV core protein activates STAT3, which in turn enhances AR-mediated transcription. This activity was blocked by a pharmacological inhibitor of the Jak/Stat signaling pathway, AG490. Vascular endothelial growth factor (VEGF) is a target gene of AR in liver and plays an important role in angiogenesis. Therefore, we examined whether HCV infection modulates VEGF expression in hepatocytes. Our results demonstrated that HCV enhances VEGF expression and facilitates tube formation in human coronary microvascular endothelial cells in the presence of AR. Together, our results suggest that HCV core protein acts as a positive regulator in AR signaling, providing further insight into oncogenic potential in the development of HCC in HCV-infected individuals.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Virology, American Society for Microbiology, Vol. 82, No. 7 ( 2008-04), p. 3320-3328
    Abstract: Hepatitis C virus (HCV) chronic infection is characterized by low-level or undetectable cellular immune responses against HCV antigens. HCV proteins have been shown to affect various intracellular events and modulate immune responses, although the precise mechanisms used to mediate these effects are not fully understood. In this study, we have examined the effect of HCV proteins on the modulation of major histocompatibility complex (MHC) class II expression and other functions important for antigen presentation in humans. Expression of an HCV 1-2962 genomic clone (HCV-FL) in human fibrosarcoma cells (HT1080) inhibited gamma interferon (IFN-γ)-induced upregulation of human leukocyte antigen-DR (HLA-DR) cell surface expression. Furthermore, inhibition of promoter activities of MHC class II transactivator (CIITA), IFN-γ-activated site (GAS), and HLA-DR was observed in IFN-γ-inducible HT1080 cells expressing HCV-FL by in vitro reporter assays. Exposure of human monocyte-derived dendritic cells (DCs) to cell culture-grown HCV (HCVcc) genotype 1a (clone H77) or 2a (clone JFH1) significantly inhibited DC maturation and was associated with the production of IL-10. Furthermore, DCs exposed to HCVcc were impaired in their functional ability to stimulate antigen-specific CD4-positive (CD4 + ) and CD8 + T-cell responses. Taken together, our results indicated that HCV can have direct and/or indirect inhibitory effects on antigen-presenting cells, resulting in reduction of antigen-specific T-cell activation. These effects may account for or contribute to the low overall level of immunogenicity of HCV observed in chronically infected patients.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Journal of Virology Vol. 82, No. 13 ( 2008-07), p. 6783-6783
    In: Journal of Virology, American Society for Microbiology, Vol. 82, No. 13 ( 2008-07), p. 6783-6783
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society for Microbiology ; 2014
    In:  Journal of Virology Vol. 88, No. 14 ( 2014-07-15), p. 7929-7940
    In: Journal of Virology, American Society for Microbiology, Vol. 88, No. 14 ( 2014-07-15), p. 7929-7940
    Abstract: Hepatitis C virus (HCV)-induced chronic liver disease is one of the leading causes of hepatocellular carcinoma (HCC). The molecular events leading to HCC following chronic HCV infection remain poorly defined. MicroRNAs (miRNAs) have been implicated in the control of many biological processes, and their deregulation is associated with different viral infections. In this study, we observed that HCV infection of hepatocytes transcriptionally downregulates miR-181c expression by modulating CCAAT/enhancer binding protein β (C/EBP-β). Reduced expression of the pri-miR-181c transcript was noted following HCV infection. In silico prediction suggests that homeobox A1 (HOXA1) is a direct target of miR-181c. HOXA1 is a member of the homeodomain-containing transcription factor family and possesses pivotal roles in normal growth, development, and differentiation of mammalian tissues. Our results demonstrated that HOXA1 expression is enhanced in HCV-infected hepatocytes. Exogenous expression of the miR-181c mimic inhibits HOXA1 and its downstream molecules STAT3 and STAT5, which are involved in cell growth regulation. Interestingly, overexpression of miR-181c inhibited HCV replication by direct binding with E1 and NS5A sequences. Furthermore, accumulation of HCV genotype 2a RNA with miR-181c was observed in an RNA-induced silencing complex in Huh7.5 cells. Our results provide new mechanistic insights into the role of miR-181c in HCV-hepatocyte interactions, and miR-181c may act as a target for therapeutic intervention. IMPORTANCE Chronic HCV infection is one of the major causes of end-stage liver disease, including hepatocellular carcinoma. An understanding of the molecular mechanisms of HCV-mediated hepatocyte growth promotion is necessary for therapeutic intervention against HCC. In this study, we have provided evidence of HCV-mediated transcriptional downregulation of miR-181c. HCV-infected liver biopsy specimens also displayed lower expression levels of miR-181c. We have further demonstrated that inhibition of miR-181c upregulates homeobox A1 (HOXA1), which is important for hepatocyte growth promotion. Exogenous expression of miR-181c inhibited HCV replication by directly binding with HCV E1 and NS5A sequences. Taken together, our results provided new mechanistic insights for an understanding of the role of miR-181c in HCV-hepatocyte interactions and revealed miR-181c as a potential target for therapeutic intervention.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society for Microbiology ; 2011
    In:  Journal of Virology Vol. 85, No. 9 ( 2011-05), p. 4157-4166
    In: Journal of Virology, American Society for Microbiology, Vol. 85, No. 9 ( 2011-05), p. 4157-4166
    Abstract: The fourth component of human complement (C4) plays an important role in innate immune function. C4 activity has been observed to be significantly lower in patients with chronic hepatitis C virus (HCV) infections, although the mechanism remains unknown. In this study, we have examined the mechanisms of C4 regulation by HCV. Liver biopsy specimens from patients with chronic HCV infections displayed significantly lower C4 mRNA levels than liver tissue samples from patients with unrelated liver disease. Further, C4 mRNA levels of the two isoforms (C4A and C4B) were significantly reduced in hepatocytes transfected with RNA from HCV genotype 1a or 2a. Subsequently, a significant C4 regulatory role of HCV core or NS5A upon C4 promoter activity was observed. HCV core or NS5A transgenic mice displayed a reduction in C4 mRNA. Gamma interferon (IFN-γ)-induced C4 promoter activation was also impaired in the presence of HCV proteins. We further demonstrated that HCV core reduced the expression of upstream stimulating factor 1 (USF-1), a transcription factor important for basal C4 expression. On the other hand, the expression of interferon regulatory factor 1 (IRF-1), which is important for IFN-γ-induced C4 expression, was inhibited by hepatocytes expressing HCV NS5A. These results underscore the roles of HCV proteins in innate immune regulation in establishing a chronic infection.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...