GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Brain, Oxford University Press (OUP), Vol. 145, No. 9 ( 2022-09-14), p. 2991-3009
    Abstract: We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1–3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1–3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1–3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2020
    In:  The Journal of Neuroscience Vol. 40, No. 44 ( 2020-10-28), p. 8413-8425
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 40, No. 44 ( 2020-10-28), p. 8413-8425
    Abstract: The interplay between hippocampus and medial entorhinal cortex (mEC) is of key importance for forming spatial representations. Within the hippocampal–entorhinal loop, the hippocampus receives context-specific signals from layers II/III of the mEC and feeds memory-associated activity back into layer V (LV). The processing of this output signal within the mEC, however, is largely unknown. We characterized the activation of the receiving mEC network by evoked and naturally occurring output patterns in mouse hippocampal-entorhinal cortex slices. Both types of glutamatergic neurons (mEC LVa and LVb) as well as fast-spiking inhibitory interneurons receive direct excitatory input from the intermediate/ventral hippocampus. Connections between the two types of excitatory neurons are sparse, and local processing of hippocampal output signals within mEC LV is asymmetric, favoring excitation of far projecting LVa neurons over locally projecting LVb neurons. These findings suggest a new role for mEC LV as a bifurcation gate for feedforward (telencephalic) and feedback (entorhinal–hippocampal) signal propagation. SIGNIFICANCE STATEMENT Patterned network activity in hippocampal networks plays a key role in the formation and consolidation of spatial memories. It is, however, largely unclear how information is transferred to the neocortex for long-term engrams. Here, we elucidate the propagation of network activity from the hippocampus to the medial entorhinal cortex. We show that patterned output from the hippocampus reaches both major cell types of deep entorhinal layers. These cells are, however, only weakly connected, giving rise to two parallel streams of activity for local and remote signal propagation, respectively. The relative weight of both pathways is regulated by local inhibitory interneurons. Our data reveal important insights into the hippocampal–neocortical dialogue, which is of key importance for memory consolidation in the mammalian brain.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2020
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cell Reports, Elsevier BV, Vol. 42, No. 1 ( 2023-01), p. 112001-
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Brain, Oxford University Press (OUP), Vol. 142, No. 2 ( 2019-02-01), p. 376-390
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...