GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 225, No. 5 ( 2022-03-01)
    Abstract: Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.
    Type of Medium: Online Resource
    ISSN: 0022-0949 , 1477-9145
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2022
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Animal Biotelemetry, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2021-08-26)
    Abstract: Bio-logging devices equipped with inertial measurement units—particularly accelerometers, magnetometers, and pressure sensors—have revolutionized our ability to study animals as necessary electronics have gotten smaller and more affordable over the last two decades. These animal-attached tags allow for fine scale determination of behavior in the absence of direct observation, particularly useful in the marine realm, where direct observation is often impossible, and recent devices can integrate more power hungry and sensitive instruments, such as hydrophones, cameras, and physiological sensors. To convert the raw voltages recorded by bio-logging sensors into biologically meaningful metrics of orientation (e.g., pitch, roll and heading), motion (e.g., speed, specific acceleration) and position (e.g., depth and spatial coordinates), we developed a series of MATLAB tools and online instructional tutorials. Our tools are adaptable for a variety of devices, though we focus specifically on the integration of video, audio, 3-axis accelerometers, 3-axis magnetometers, 3-axis gyroscopes, pressure, temperature, light and GPS data that are the standard outputs from Customized Animal Tracking Solutions (CATS) video tags. Our tools were developed and tested on cetacean data but are designed to be modular and adaptable for a variety of marine and terrestrial species. In this text, we describe how to use these tools, the theories and ideas behind their development, and ideas and additional tools for applying the outputs of the process to biological research. We additionally explore and address common errors that can occur during processing and discuss future applications. All code is provided open source and is designed to be useful to both novice and experienced programmers.
    Type of Medium: Online Resource
    ISSN: 2050-3385
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2711027-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-9-30)
    Abstract: Soundscapes offer rich descriptions of composite acoustic environments. Characterizing marine soundscapes simply through sound levels results in incomplete descriptions, limits the understanding of unique features, and impedes meaningful comparisons. Sources that contribute to sound level metrics shift in time and space with changes in biological patterns, physical forces, and human activity. The presence of a constant or chronic source is often interwoven with episodic sounds. Further, the presence and intensity of sources can influence other sources, calling for a more integrated approach to characterizing soundscapes. Here, we illustrate this complexity using data from a national-scale effort, the Sanctuary Soundscape Monitoring Project (SanctSound), an initiative designed to support collection of biological, environmental, and human use data to compliment the interpretation of sound level measurements. Using nine examples from this diverse dataset we demonstrate the benefit of integrating source identification and site features to interpret sound levels across a diversity of shallow water marine soundscapes ( & lt;150 m). Sound levels from sites in high human use areas reflect the anthropogenic influences on the soundscape, especially when measuring broad frequency bands, whereas sites with relatively low human activity and high sound levels reveal biological features of the soundscape. At sites with large tidal changes, sound levels correlated with the magnitude of tidal flow, and sound levels during high tidal flow periods were similar to sound levels at sites near commercial shipping lanes. At sites in relatively close proximity ( & lt;30 km), sound levels diverge because of the presence of different proximate sound contributors and propagation features of the site. A review of emerging methodologies for integrated soundscape analysis, including acoustic scenes, provides a framework for interpreting soundscapes across a variety of conditions. With a global growth in monitoring efforts collecting standardized measurements over widely distributed arrays, more integrated methods are needed to advance the utility of soundscapes in marine resource management.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 148, No. 2 ( 2020-08-01), p. 845-858
    Abstract: Passive acoustic monitoring of ocean soundscapes can provide information on ecosystem status for those tasked with protecting marine resources. In 2015, the National Oceanic and Atmospheric Administration (NOAA) established a long-term, continuous, low-frequency (10 Hz–2 kHz) passive acoustic monitoring site in the Cordell Bank National Marine Sanctuary (CBNMS), located offshore of the central United States of America (U.S.) west coast, near San Francisco, CA. The California Current flows southward along the coast in this area, supporting a diverse community of marine animals, including several baleen whale species. Acoustic data analysis revealed that both large vessels and vocalizing baleen whales contribute to the ambient soundscape of the CBNMS. Sound levels fluctuated by month with the highest levels in the fall and lowest levels in the summer. Throughout the year, very low-frequency (10–100 Hz) sound levels were most variable. Vessels and whales overlap in their contributions to ambient sound levels within this range, although vessel contributions were more omnipresent, while seasonal peaks were associated with vocalizing whales. This characterization of low-frequency ambient sound levels in the CBNMS establishes initial baselines for an important component of this site's underwater soundscape. Standardized monitoring of soundscapes directly supports NOAA's ability to evaluate and report on conditions within national marine sanctuaries.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2020
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Ecosphere, Wiley, Vol. 12, No. 11 ( 2021-11)
    Abstract: A core goal of the National Ecological Observatory Network (NEON) is to measure changes in biodiversity across the 30‐yr horizon of the network. In contrast to NEON’s extensive use of automated instruments to collect environmental data, NEON’s biodiversity surveys are almost entirely conducted using traditional human‐centric field methods. We believe that the combination of instrumentation for remote data collection and machine learning models to process such data represents an important opportunity for NEON to expand the scope, scale, and usability of its biodiversity data collection while potentially reducing long‐term costs. In this manuscript, we first review the current status of instrument‐based biodiversity surveys within the NEON project and previous research at the intersection of biodiversity, instrumentation, and machine learning at NEON sites. We then survey methods that have been developed at other locations but could potentially be employed at NEON sites in future. Finally, we expand on these ideas in five case studies that we believe suggest particularly fruitful future paths for automated biodiversity measurement at NEON sites: acoustic recorders for sound‐producing taxa, camera traps for medium and large mammals, hydroacoustic and remote imagery for aquatic diversity, expanded remote and ground‐based measurements for plant biodiversity, and laboratory‐based imaging for physical specimens and samples in the NEON biorepository. Through its data science‐literate staff and user community, NEON has a unique role to play in supporting the growth of such automated biodiversity survey methods, as well as demonstrating their ability to help answer key ecological questions that cannot be answered at the more limited spatiotemporal scales of human‐driven surveys.
    Type of Medium: Online Resource
    ISSN: 2150-8925 , 2150-8925
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2572257-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Current Biology, Elsevier BV, Vol. 30, No. 23 ( 2020-12), p. 4773-4779.e3
    Type of Medium: Online Resource
    ISSN: 0960-9822
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2019214-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Functional Ecology, Wiley, Vol. 35, No. 4 ( 2021-04), p. 894-908
    Abstract: Animals are distributed relative to the resources they rely upon, often scaling in abundance relative to available resources. Yet, in heterogeneously distributed environments, describing resource availability at relevant spatial scales remains a challenge in ecology, inhibiting understanding of predator distribution and foraging decisions. We investigated the foraging behaviour of two species of rorqual whales within spatially limited and numerically extraordinary super‐aggregations in two oceans. We additionally described the lognormal distribution of prey data at species‐specific spatial scales that matched the predator's unique lunge‐feeding strategy. Here we show that both humpback whales off South Africa's west coast and blue whales off the US west coast perform more lunges per unit time within these aggregations than when foraging individually, and that the biomass within gulp‐sized parcels was on average higher and more tightly distributed within super‐group‐associated prey patches, facilitating greater energy intake per feeding event as well as increased feeding rates. Prey analysis at predator‐specific spatial scales revealed a stronger association of super‐groups with patches containing relatively high geometric mean biomass and low geometric standard deviations than with arithmetic mean biomass, suggesting that the foraging decisions of rorqual whales may be more influenced by the distribution of high‐biomass portions of a patch than total biomass. The hierarchical distribution of prey in spatially restricted, temporally transient, super‐group‐associated patches demonstrated high biomass and less variable distributions that facilitated what are likely near‐minimum intervals between feeding events. Combining increased biomass with increased foraging rates implied that overall intake rates of whales foraging within super‐groups were approximately double those of whales foraging in other environments. Locating large, high‐quality prey patches via the detection of aggregation hotspots may be an important aspect of rorqual whale foraging, one that may have been suppressed when population sizes were anthropogenically reduced in the 20th century to critical lows. A free Plain Language Summary can be found within the Supporting Information of this article.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Functional Ecology, Wiley, Vol. 36, No. 4 ( 2022-04), p. 882-895
    Abstract: Matching the timing of life‐history transitions with ecosystem phenology is critical for the survival of many species, especially those undertaking long‐distance migrations. As a result, whether and how migratory populations adjust timing of life‐history transitions in response to environmental variability are important questions in ecology and conservation. Yet the flexibility and drivers of life‐history transitions remain largely untested for migratory marine populations, which contend with the unique spatiotemporal dynamics and sensory conditions found in marine ecosystems. Here, using an acoustic signature of blue whales’ regional population‐level transition from foraging to breeding migration, we document significant interannual flexibility in the timing of this life‐history transition (spanning roughly 4 months) over a continuous 6‐year study period. We further show that variability in the timing of this transition follows the oceanographic phenology of blue whales’ foraging habitat, with a later transition from foraging to breeding migration occurring in years with an earlier onset, later peak and greater accumulation of biological productivity. These findings indicate that blue whales delay the transition from foraging to southward migration in years of the highest and most persistent biological productivity, consistent with the hypothesis that this population maximizes energy intake on foraging grounds rather than departing towards breeding grounds as soon as sufficient energy reserves are accumulated. The use of flexible cues (e.g. foraging conditions and long‐distance acoustic signals) in timing a major life‐history transition may be key to the persistence of this endangered population facing the pressures of rapid environmental change. Furthermore, these results extend theoretical understanding of the flexibility and drivers of population‐level migration to a relatively solitary marine migrant. Read the free Plain Language Summary for this article on the Journal blog.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 146, No. 4_Supplement ( 2019-10-01), p. 2772-2772
    Abstract: Monterey Bay National Marine Sanctuary, in the highly productive California Current System, is vital habitat for many marine mammal species. Passive acoustic monitoring (PAM) is an effective means to detect species’ presence and acoustic behavior. Using the infrastructure of a cabled observatory and detection and classification of sound sources, we examine applications of PAM as an essential part of ecosystem-based research and management. The first case study integrates PAM with multidisciplinary data—whale sighting rates, forage species’ abundances, levels of primary production, concentrations of a neurotoxic algal compound, and acoustic modeling results—to examine how occurrence patterns of humpback whale song reflect ecosystem variations. The second case study takes a similar approach to examine blue whale call occurrence, with emphasis on varying detection and classification methods for different call types. The third case study examines an anthropogenic sound source: explosives intended to deter interference of pinnipeds in fishing operations. Toward new developments that are proving insightful, we consider three further approaches: (1) application of unsupervised machine learning methods to advance characterization of humpback whale song structure; (2) integration of PAM and active acoustic sensing to examine predator-prey relationships; and (3) integration of PAM time-series analyses with data from animal tags.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2019
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Remote Sensing Vol. 4 ( 2023-2-3)
    In: Frontiers in Remote Sensing, Frontiers Media SA, Vol. 4 ( 2023-2-3)
    Abstract: The NOAA-NPS Ocean Noise Reference Station Network (NRS) is a passive acoustic monitoring effort to record the low-frequency ( & lt;2 kHz) sound field throughout the U.S. Exclusive Economic Zone. Data collection began in 2014 and spans 12 acoustic recording locations. To date, NRS datasets have been analyzed to understand spatial variation of large-scale sound levels, however, assessment of specific sound sources is an area where these datasets can provide additional insights. To understand seasonal patterns of blue whale, Balaenoptera musculus , and fin whale, B. physalus , sound production in the eastern North Pacific Ocean, this study explored data recorded between 2014 and 2020 from four NRS recording sites. A call index (CI) was used to quantify the intensity of blue whale B calls and fin whale 20 Hz pulses. Diel and seasonal patterns were then determined in the context of their migratory patterns. Most sites shared similar patterns in blue whale CI: persistent acoustic presence for 4–5 months starting by August and ending by February with a CI maximum in October or November. Fin whale patterns included persistent acoustic presence for 5–7 months starting by October and ending before April with a CI maximum between October and December. The diel patterning of blue whale song varied across the sites with the Gulf of Alaska, Olympic Coast, Cordell Bank, and Channel Islands (2014–2015) exhibiting a tendency towards nighttime song detection. However, this diel pattern was not observed at Channel Islands (2018–2020). Fin whale song detection was distributed evenly across day and night at most recording sites and months, however, a tendency toward nighttime song detection was observed in Cordell Bank during fall, and Gulf of Alaska and Olympic Coast during spring. Understanding call and migration patterns for blue and fin whales is essential for conservation efforts. By using passive acoustic monitoring and efficient detection methods, such as CI, it is possible to process large amounts of bioacoustic data and better understand the migratory behaviors of endangered marine species.
    Type of Medium: Online Resource
    ISSN: 2673-6187
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 3091289-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...