GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 9, No. 9 ( 2016-09-19), p. 3231-3296
    Abstract: Abstract. The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Physical Oceanography Vol. 37, No. 5 ( 2007-05-01), p. 1376-1393
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 37, No. 5 ( 2007-05-01), p. 1376-1393
    Abstract: There are two distinct mechanisms by which eddies provide systematic transport of tracer on isopycnals: the advective transport, associated with the slumping of isopycnals, and the diffusive transport, associated with down-gradient diffusion. Depending on the large-scale tracer distribution, eddy advective transport has either the same direction as or opposite direction to eddy diffusive transport. As a consequence, eddy advection and eddy diffusion can reinforce each other for some tracers but oppose each other for other tracers. Using scaling analysis, it is argued that the relative directions of eddy advective and diffusive transports can be determined simply from the relative slopes of tracers and isopycnals. An eddy-resolving (1/12°) global ocean model is used to illustrate the two eddy transport mechanisms for temperature and salinity in the Southern Ocean. Applications to other tracers, such as oxygen, are discussed. The diagnosed eddy diffusivity for temperature (and salinity) is found to be considerably different from the eddy diffusivity for eddy advective transport velocity.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Physical Oceanography Vol. 53, No. 6 ( 2023-06), p. 1555-1575
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 53, No. 6 ( 2023-06), p. 1555-1575
    Abstract: The annual mean net surface heat fluxes (NSHFs) from the ocean to the atmosphere generated by historical forcing simulations using the HadGEM3-GC3.1 coupled climate model are shown to be relatively independent of resolution, for model horizontal grid spacings between 1° and 1/12°, and to agree well with those based on the DEEP-C (Diagnosing Earth’s Energy Pathways in the Climate System) analyses. Interpretations of the geographical patterns of the NSHFs are suggested that use basic ideas extracted from the theory of the ventilated thermocline and planetary geostrophic layer models. As a step toward investigation of the validity of the assumptions underlying the interpretations, we examine the contributions to the rate of change of the active tracers from the main terms in their prognostic equations as a function of the active tracer and latitude. We find that, consistent with our assumptions, the main contributions from vertical diffusion occur in “near-surface” layers. We also find that, except at high latitudes, the sum of the NSHF and vertical diffusion is mainly balanced by time-mean advection of potential temperature. A corresponding statement holds for potential density but not salinity. We also show that the heat input by latitude bands is dominated by the NSHFs, the time-mean advection, and the equatorial Pacific. It is usually assumed that global integrals of tracer tendencies due to advection as a function of the tracer should be identically zero. We show that nonnegligible contributions to them arise from net freshwater surface fluxes. Significance Statement Our aim is to understand better how the heat and freshwater that are input into the ocean from the atmosphere are then redistributed within the ocean and released back into the atmosphere. We show that the geographical patterns of the heat that is input to or released from the ocean surface in coupled climate models agree well with observations. We outline a dynamically based interpretation of these surface fluxes and provide evidence that supports some of its assumptions. This work might in future help us to understand how the patterns of the surface fluxes will respond to changes in greenhouse gas forcing.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 121, No. 1 ( 2016-01), p. 27-59
    Abstract: Pathways of the Arctic Pacific Water are investigated in ocean models Variability of the Pacific Water due to wind is examined Mechanisms of the Pacific Water variability are suggested
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2016
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Physical Oceanography Vol. 39, No. 4 ( 2009-04-01), p. 894-914
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 39, No. 4 ( 2009-04-01), p. 894-914
    Abstract: This study uses tracer experiments in a global eddy-resolving ocean model to examine two diagnostic methods for inferring effective eddy isopycnic diffusivity from point release tracers. The first method is based on the growth rate of the area occupied by the tracers (the equivalent variance). During the period when tracer dispersion is dominated by stirring, the equivalent variance is found to increase at a rate between the second power law (for a pure shearing flow regime) and the exponential law (for a pure stretching flow regime). The second method is based on the length of the tracer contours. In the framework of equivalent radius, the two methods of inferring eddy diffusivity can be understood as two different averagings over the tracer patch. Over a shorter period of tracer dispersion the two methods give different eddy diffusivities, and only over a longer time when tracer dispersion approaches the final stage of diffusion do they give a similar value of diffusivity. A new diagnostic quantity called stirring efficiency is introduced to indicate different flow regimes by measuring the efficiency of stirring against mixing. The new diagnostic quantity has the advantage that it can be calculated directly from the gradients of tracer distribution without needing to estimate strain rate or background diffusivity.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Physical Oceanography Vol. 43, No. 3 ( 2013-03-01), p. 647-668
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 43, No. 3 ( 2013-03-01), p. 647-668
    Abstract: The impact of small-scale topography on the ocean’s dynamical balance is investigated by quantifying the rates at which internal wave drag extracts (angular) momentum and vorticity from the general circulation. The calculation exploits the recent advent of two near-global descriptions of topographic roughness on horizontal scales on the order of 1–10 km, which play a central role in the generation of internal lee waves by geostrophic flows impinging on topography and have been hitherto unresolved by bathymetric datasets and ocean general circulation models alike. It is found that, while internal wave drag is a minor contributor to the ocean’s dynamical balance over much of the globe, it is a significant player in the dynamics of extensive areas of the ocean, most notably the Antarctic Circumpolar Current and several regions of enhanced small-scale topographic variance in the equatorial and Southern Hemisphere oceans. There, the contribution of internal wave drag to the ocean’s (angular) momentum and vorticity balances is generally on the order of ten to a few tens of percent of the dominant source and sink terms in each dynamical budget, which are respectively associated with wind forcing and form drag by topography with horizontal scales from 500 to 1000 km. It is thus suggested that the representation of internal wave drag in general circulation models may lead to significant changes in the deep ocean circulation of those regions. A theoretical scaling is derived that captures the basic dependence of internal wave drag on topographic roughness and near-bottom flow speed for most oceanographically relevant regimes.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2000
    In:  Journal of Physical Oceanography Vol. 30, No. 1 ( 2000-01), p. 160-174
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 30, No. 1 ( 2000-01), p. 160-174
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2000
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Informa UK Limited ; 1984
    In:  Geophysical & Astrophysical Fluid Dynamics Vol. 28, No. 2 ( 1984-03), p. 161-170
    In: Geophysical & Astrophysical Fluid Dynamics, Informa UK Limited, Vol. 28, No. 2 ( 1984-03), p. 161-170
    Type of Medium: Online Resource
    ISSN: 0309-1929 , 1029-0419
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 1984
    detail.hit.zdb_id: 2025363-1
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 14, No. 6 ( 2021-06-08), p. 3437-3472
    Abstract: Abstract. The ocean plays a key role in modulating the climate of the Earth system (ES). At the present time it is also a major sink both for the carbon dioxide (CO2) released by human activities and for the excess heat driven by the resulting atmospheric greenhouse effect. Understanding the ocean's role in these processes is critical for model projections of future change and its potential impacts on human societies. A necessary first step in assessing the credibility of such future projections is an evaluation of their performance against the present state of the ocean. Here we use a range of observational fields to validate the physical and biogeochemical performance of the ocean component of UKESM1, a new Earth system model (ESM) for CMIP6 built upon the HadGEM3-GC3.1 physical climate model. Analysis focuses on the realism of the ocean's physical state and circulation, its key elemental cycles, and its marine productivity. UKESM1 generally performs well across a broad spectrum of properties, but it exhibits a number of notable biases. Physically, these include a global warm bias inherited from model spin-up, excess northern sea ice but insufficient southern sea ice and sluggish interior circulation. Biogeochemical biases found include shallow remineralization of sinking organic matter, excessive iron stress in regions such as the equatorial Pacific, and generally lower surface alkalinity that results in decreased surface and interior dissolved inorganic carbon (DIC) concentrations. The mechanisms driving these biases are explored to identify consequences for the behaviour of UKESM1 under future climate change scenarios and avenues for model improvement. Finally, across key biogeochemical properties, UKESM1 improves in performance relative to its CMIP5 precursor and performs well alongside its fellow members of the CMIP6 ensemble.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    IOP Publishing ; 2018
    In:  Environmental Research Letters Vol. 13, No. 7 ( 2018-07-01), p. 074036-
    In: Environmental Research Letters, IOP Publishing, Vol. 13, No. 7 ( 2018-07-01), p. 074036-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...