GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Genetics in Medicine, Elsevier BV, Vol. 24, No. 1 ( 2022-01), p. 214-224
    Type of Medium: Online Resource
    ISSN: 1098-3600
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2063504-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Royal Society ; 2023
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 290, No. 2000 ( 2023-06-14)
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 290, No. 2000 ( 2023-06-14)
    Abstract: Habitat isolation and disturbance are important regulators of biodiversity, yet it remains unclear how these environmental features drive differences in parasite diversity between ecosystems. We test whether the biological communities in an isolated, frequently disturbed marine ecosystem (deep-sea hydrothermal vents) have reduced parasite richness and relatively fewer parasite species with indirect life cycles (ILCs) compared to ecosystems that are less isolated and less disturbed. We surveyed the parasite fauna of the biological community at the 9°50′N hydrothermal vent field on the East Pacific Rise and compared it to similar datasets from a well-connected and moderately disturbed ecosystem (kelp forest) and an isolated and undisturbed ecosystem (atoll sandflat). Parasite richness within host species did not differ significantly between ecosystems, yet total parasite richness in the vent community was much lower due to the low number of predatory fish species. Contrary to expectation, the proportion of ILC parasite species was not lower at vents due to a high richness of trematodes, while other ILC parasite taxa were scarce (nematodes) or absent (cestodes). These results demonstrate the success of diverse parasite taxa in an extreme environment and reinforce the importance of host diversity and food web complexity in governing parasite diversity.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2023
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Ecology, Wiley, Vol. 102, No. 8 ( 2021-08)
    Abstract: Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep‐sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9°50′ N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems. We focused on functional traits including body size, external protection, provision of habitat (foundation species), and trophic mode to understand how the unique nutritional and stress conditions influence community composition. In contrast to established theory, large, fast‐growing, structure‐forming organisms colonized rapidly at vents, while small, asexually reproducing organisms were not abundant until later in succession. Species in early succession had high external protection, as expected in the harsh thermal and chemical conditions after the eruption. Changes in traits related to feeding ecology and dispersal potential over succession agreed with expectations from other ecosystems. We also tracked functional diversity metrics over time to see how they compared to species diversity. While species diversity peaked at 8 yr post‐eruption, functional diversity was continuing to increase at 11 yr. Our results indicate that deep‐sea hydrothermal vents have distinct successional dynamics due to the high stress and high nutrient conditions in early succession. These findings highlight the importance of extending theory to new systems and considering function to allow comparison between ecosystems with different species and environmental conditions.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 1988
    In:  Journal of Experimental Marine Biology and Ecology Vol. 120, No. 3 ( 1988-9), p. 247-261
    In: Journal of Experimental Marine Biology and Ecology, Elsevier BV, Vol. 120, No. 3 ( 1988-9), p. 247-261
    Type of Medium: Online Resource
    ISSN: 0022-0981
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1988
    detail.hit.zdb_id: 410283-6
    detail.hit.zdb_id: 1483103-X
    SSG: 12
    SSG: 7,20
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    The Company of Biologists ; 2016
    In:  Journal of Experimental Biology Vol. 219, No. 9 ( 2016-05-01), p. 1303-1310
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 219, No. 9 ( 2016-05-01), p. 1303-1310
    Abstract: Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology–flow interactions.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2016
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Experimental Biology, The Company of Biologists
    Abstract: The swimming behavior of invertebrate larvae can affect their dispersal, survival, and settlement in the ocean. Modelling this behavior accurately poses unique challenges as behavior is controlled both by physiology and environmental cues. Some larvae use cilia to both swim and create feeding currents, resulting in potential trade-offs between the two functions. Food availability is naturally patchy and often occurs in shallow horizontal layers in the ocean. Also, larval swimming motions generally differ in the horizontal and vertical. In order to investigate behavioral response to food by ciliated larvae, we measure their behavioral anisotropy by quantifying deviations from a model based in isotropic diffusion. We hypothesize that larvae will increase horizontal swimming and decrease vertical swimming after encountering food which could lead to aggregation at food layers. We consider Crepidula fornicata larvae which are specifically of interest as they exhibit unsteady and variable swimming behaviors that are difficult to categorize. We tracked the larvae in still water with and without food, with a portion of the larvae starved beforehand. On average, larvae in the presence of food were observed higher in the water column, with higher swimming speeds and higher horizontal swimming velocities when compared to larvae without food. Starved larvae also exhibited higher vertical velocities in food, suggesting no aggregation behavior. While most treatments showed strong anisotropy in larval behavior, we found that starved larvae without food exhibited approximately isotropic kinematics, indicating that behavioral anisotropy can vary with environmental history and conditions to enhance foraging success or mitigate food-poor environments.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2020
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: npj Ocean Sustainability, Springer Science and Business Media LLC, Vol. 1, No. 1 ( 2022-12-21)
    Abstract: The ocean has recently taken centre stage in the global geopolitical landscape. Despite rising challenges to the effectiveness of multilateralism, attention to ocean issues appears as an opportunity to co-create pathways to ocean sustainability at multiple levels. The ocean science community, however, is not sufficiently well organised to advance these pathways and provide policy input. The Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services demonstrate how knowledge consensus and integration have been instrumental in charting global pathways and eliciting commitments to address, respectively, climate change and biodiversity loss. An equally impactful global platform with a thematic focus on ocean sustainability is needed. Here we introduce the International Panel for Ocean Sustainability (IPOS) as a coordinating mechanism to integrate knowledge systems to forge a bridge across ocean science-policy divides collectively. The IPOS will enrich the global policy debate in the Ocean Decade and support a shift toward ocean sustainability.
    Type of Medium: Online Resource
    ISSN: 2731-426X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 3134837-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1994
    In:  Journal of Geophysical Research: Oceans Vol. 99, No. C6 ( 1994-06-15), p. 12655-12665
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 99, No. C6 ( 1994-06-15), p. 12655-12665
    Abstract: One of the most intriguing ecological questions remaining unanswered about hydrothermal vents is how vent organisms disperse and persist. Because vent species are generally endemic and their habitat is patchy and ephemeral on time scales as short as decades, they must disperse frequently, presumably in a planktonic larval stage. We suggest that dispersal occurs not only in near‐bottom currents but also several hundred meters above the seafloor at the level of the laterally spreading hydrothermal plumes. Using a standard buoyant plume model and observed larval abundances near hydrothermal vents at 9°50′N along the East Pacific Rise, we estimate a mean vertical flux of approximately 100 vent larvae/h at a single black smoker. Larval abundances were extremely variable near vents, resulting in a range in estimated fluxes of at least an order of magnitude. The suitability of the plume model for these calculations was determined by releasing dyes (fluorescein and rhodamine) as larval mimics into a black smoker plume. The plume model predicted dye fluxes in the plume adequately, given the short averaging times of our measurements and the difficulty of sampling the plume centerline. Our calculations of substantial numbers of vent larvae entrained into the plume support the idea that transport in the lateral plume is an important mechanism of dispersal. Because vertical shear in flows above vents can cause larval dispersal trajectories in the plume to deviate considerably from those along the seafloor, larvae in the plume may have access to habitats that are unreachable by larvae in near‐bottom flows.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1994
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Human Kinetics ; 2004
    In:  Journal of Applied Biomechanics Vol. 20, No. 2 ( 2004-05), p. 177-184
    In: Journal of Applied Biomechanics, Human Kinetics, Vol. 20, No. 2 ( 2004-05), p. 177-184
    Abstract: This study assessed the effect of offset normalizations on variability in kinematic data. The tarsal angles for 12 elderly horses, with mild lameness of the tarsal joint, were measured at the trot pre and post 2 weeks administration of a dietary supplement intended to promote joint health (Corta-Flx, Nature's Own, Aiken, SC). For five strides, pre- and postsupplement, the tarsal angles measured on the flexor side (full exten. = 180°) were smoothed, normalized to 101 data points, and averaged. Four offset normalizations were applied: minus standing tarsal angle (Tarsal); minus impact angle (Impact); minus mean angle (Average); multiplicative scatter correction (MSC). For 11 angle variables across the stride there were no significant differences pre- and postsupplement, p 〉 0.05. Normalization had no effect on the timing of variables or magnitude of angles, but generally the variability in the angles was reduced. Least to greatest reduction occurred with the Tarsal, Impact, Average, then MSC normalizations. The Average and MSC techniques resulted in two and three variables, respectively, becoming significantly different. These differences were small, emphasizing that significant findings should be interpreted for meaningfulness. Normalizations based on the data gave the largest reductions in variability, but these may introduce biases into the data. Thus, normalization with respect to measurements external to data capture may be preferable, but their theoretical and statistical relationship to the kinematic variables should be confirmed. MSC altered the shape of the kinematic trace, which may be misleading. Offset normalizations should be used with care, but they can reduce variability in kinematic data to increase statistical power in biomechanical studies.
    Type of Medium: Online Resource
    ISSN: 1065-8483 , 1543-2688
    Language: Unknown
    Publisher: Human Kinetics
    Publication Date: 2004
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Global Ecology and Biogeography, Wiley, Vol. 28, No. 11 ( 2019-11), p. 1538-1551
    Abstract: Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent ( s Div‐funded trait database for the F unctional D iversity of vent s). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...