GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Physical Oceanography Vol. 40, No. 12 ( 2010-12-01), p. 2661-2678
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 40, No. 12 ( 2010-12-01), p. 2661-2678
    Abstract: In May and June 2005, a transatlantic hydrographic section along 36°N was occupied. A velocity field is calculated using inverse methods. The derived 36°N circulation has an overturning transport (maximum in the overturning streamfunction) of 16.6 Sv (1 Sv ≡ 106 m3 s−1) at 1070 m. The heat transport across the section, 1.14 ± 0.12 PW, is partitioned into overturning and horizontal heat transports of 0.75 and 0.39 PW, respectively. The horizontal heat flux is set by variability at the gyre rather than by mesoscale. The freshwater flux across the section is 1.55 ± 0.18 Sv southward based on a 0.8-Sv flow from the Pacific through the Bering Strait at a salinity of 32.5 psu. The oceanic divergence of freshwater implies a net input of freshwater to the ocean of 0.75 Sv over the North Atlantic and Arctic between 36°N and the Bering Strait. Most (85%) of the recently ventilated upper North Atlantic Deep Water (water originating in the Labrador Sea) transport across the section occurs in the deep western boundary current rather than being associated with an interior pathway to the west of the mid-Atlantic ridge.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 10 ( 2005-05-15), p. 1575-1590
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 10 ( 2005-05-15), p. 1575-1590
    Abstract: A significant change in properties of the thermocline is observed across the whole Indian Ocean 32°S section between 1987 and 2002. This change represents a reversal of the pre-1987 freshening and decreasing oxygen concentrations of the upper thermocline that had been interpreted as a fingerprint of anthropogenic climate change. The thermocline at the western end of the section (40°–70°E) is occupied by a single variety of mode water with a potential temperature of around 13°C. The thermocline at the eastern end of the 32°S section is occupied by mode waters with a range of properties cooling from ∼11°C at 80°E to ∼9°C near the Australian coast. The change in θ–S properties between 1987 and 2002 is zonally coherent east of 80°E, with a maximum change on isopycnals at 11.6°C. Ages derived from helium–tritium data imply that the mode waters at all longitudes take about the same time to reach 32°S from their respective ventilation sites. Dissolved oxygen concentration changes imply that all of the mode water reached the section ∼20% faster in 2002 than in 1987.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2008
    In:  Progress in Oceanography Vol. 79, No. 1 ( 2008-10), p. 20-36
    In: Progress in Oceanography, Elsevier BV, Vol. 79, No. 1 ( 2008-10), p. 20-36
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2008
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 6 ( 2019-6-7)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2017
    In:  Journal of Geophysical Research: Oceans Vol. 122, No. 1 ( 2017-01), p. 713-725
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 122, No. 1 ( 2017-01), p. 713-725
    Abstract: Twenty‐one annual occupations of SR1b in Drake Passage show large interannual variability in deep temperature Cooling due to isopycnal migration adds to trend of cooling on isopycnals Deep temperature variability related to positions of ACC fronts through simple proxy
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2017
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2003
    In:  Science Vol. 300, No. 5628 ( 2003-06-27), p. 2086-2088
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 300, No. 5628 ( 2003-06-27), p. 2086-2088
    Abstract: A new transindian hydrographic section across 32°S reveals that thermocline mode waters have become saltier and colder since 1987. This change almost entirely reverses the observed freshening of mode waters from the 1960s to 1987 that has been interpreted to be the result of anthropogenic climate change on the basis of coupled climate models. Here, we compare five hydrographic sections from 1936, 1965, 1987, 1995, and 2002 to show that upper thermocline waters (10°C to 17°C) changed little from 1936to 1965, freshened from 1965 to 1987, and since 1987 have become saltier. These results demonstrate substantial oscillations in mode-water properties.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2003
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 22 ( 2015-11-15), p. 8888-8906
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 22 ( 2015-11-15), p. 8888-8906
    Abstract: The first continuous estimates of freshwater flux across 26.5°N are calculated using observations from the RAPID–MOCHA–Western Boundary Time Series (WBTS) and Argo floats every 10 days between April 2004 and October 2012. The mean plus or minus the standard deviation of the freshwater flux (FW) is −1.17 ± 0.20 Sv (1 Sv ≡ 106 m3 s−1; negative flux is southward), implying a freshwater divergence of −0.37 ± 0.20 Sv between the Bering Strait and 26.5°N. This is in the sense of an input of 0.37 Sv of freshwater into the ocean, consistent with a region where precipitation dominates over evaporation. The sign and the variability of the freshwater divergence are dominated by the overturning component (−0.78 ± 0.21 Sv). The horizontal component of the freshwater divergence is smaller, associated with little variability and positive (0.35 ± 0.04 Sv). A linear relationship, describing 91% of the variance, exists between the strength of the meridional overturning circulation (MOC) and the freshwater flux (−0.37 − 0.047 Sv of FW per Sverdrups of MOC). The time series of the residual to this relationship shows a small (0.02 Sv in 8.5 yr) but detectable decrease in the freshwater flux (i.e., an increase in the southward freshwater flux) for a given MOC strength. Historical analyses of observations at 24.5°N are consistent with a more negative freshwater divergence from −0.03 to −0.37 Sv since 1974. This change is associated with an increased southward freshwater flux at this latitude due to an increase in the Florida Straits salinity (and therefore the northward salinity flux).
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 5 ( 2020-03-01), p. 1677-1689
    Abstract: Northward ocean heat transport at 26°N in the Atlantic Ocean has been measured since 2004. The ocean heat transport is large—approximately 1.25 PW, and on interannual time scales it exhibits surprisingly large temporal variability. There has been a long-term reduction in ocean heat transport of 0.17 PW from 1.32 PW before 2009 to 1.15 PW after 2009 (2009–16) on an annual average basis associated with a 2.5-Sv (1 Sv ≡ 10 6 m 3 s −1 ) drop in the Atlantic meridional overturning circulation (AMOC). The reduction in the AMOC has cooled and freshened the upper ocean north of 26°N over an area following the offshore edge of the Gulf Stream/North Atlantic Current from the Bahamas to Iceland. Cooling peaks south of Iceland where surface temperatures are as much as 2°C cooler in 2016 than they were in 2008. Heat uptake by the atmosphere appears to have been affected particularly along the path of the North Atlantic Current. For the reduction in ocean heat transport, changes in ocean heat content account for about one-quarter of the long-term reduction in ocean heat transport while reduced heat uptake by the atmosphere appears to account for the remainder of the change in ocean heat transport.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Oceans Vol. 104, No. C9 ( 1999-09-15), p. 21007-21020
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 104, No. C9 ( 1999-09-15), p. 21007-21020
    Abstract: In January 1993, two Agulhas rings were sampled in the eastern South Atlantic during the World Ocean Circulation Experiment one‐time hydrographic section A11. The first of these, Ring 1, was sampled at 36°S, 4°E in the Subtropical Frontal Zone and was smaller and less energetic than other, more typical Agulhas rings, owing partly to its interactions with the North Subtropical Front. The other, Ring 2, was sampled at 33°S, 10°E in the subtropics. This ring was average in size and reasonably representative of the rings observed in the southeast Atlantic during the early 1990s. The path of the rings is found to be dominated by advection in the mean flow rather than self‐induced velocities of eddies under the β effect. We observe significant differences in reduced gravity and available heat and salt anomalies in the rings; from these we infer temporal variability in the stratification of rings upon their formation at the Agulhas Retroflection. This temporal variability in the structure of rings will affect the fluxes associated with them. Data collected within Ring 2 show that neglecting consideration of the water beneath the 10°C isotherm underestimates the volume flux by half and the potential temperature and salinity flux by in excess of one third and one half, respectively. Using a base of the 3.5°C isotherm and including the high‐salinity intermediate water from the Indian Ocean is found to be more appropriate. With these conditions, six Agulhas rings per year entering the subtropical South Atlantic would equate to a volume flux of 9 Sv and an absolute potential temperature and salinity flux of 84 Sv°C and 322 Sv psu (1 Sv psu ≈ 10 6 kg s −1 ). The significant flux of intermediate water from the Indian Ocean may be as important in the return path of the thermohaline circulation as the intermediate water that enters the South Atlantic through Drake Passage. Further, the water associated with Agulhas rings and cooler than 10°C potentially contributes a larger volume flux to the warm water return path than the corresponding surface and upper thermocline water.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2020
    In:  Geophysical Research Letters Vol. 47, No. 1 ( 2020-01-16)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 47, No. 1 ( 2020-01-16)
    Abstract: Temperature changes at the winter mixed layer base are partitioned into heave and spice contributions Isopycnal heave explains multidecadal warming in subtropical gyres at the winter mixed layer base Density‐compensated temperature anomalies originate in regions of surface salinity maxima
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...