GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2007
    In:  Biophysical Journal Vol. 93, No. 6 ( 2007-09), p. 2110-2117
    In: Biophysical Journal, Elsevier BV, Vol. 93, No. 6 ( 2007-09), p. 2110-2117
    Type of Medium: Online Resource
    ISSN: 0006-3495
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2007
    detail.hit.zdb_id: 1477214-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 5, No. Supplement_1 ( 2021-05-03), p. A325-A325
    Abstract: Congenital hyperinsulinism (HI) is the most common cause of persistent hypoglycemia in newborns and infants and arises from dysregulated insulin secretion. Rapid recognition and treatment are vital to prevent seizures, permanent developmental delays, coma, or even death. Very few medical options exist to treat congenital HI patients: the KATP channel activator diazoxide, the injectable somatostatin receptor peptide agonists octreotide and lanreotide, or chronic glucose infusions. However, side effects and/or limited efficacy render these therapies inadequate for many patients. Somatostatin is a 14-amino acid peptide hormone with a broad spectrum of biological actions, which are regulated through five somatostatin receptor subtypes (SST1-SST5). Somatostatin’s common physiological role is to down-regulate secretion of other hormones in various tissues. Its role in the maintenance of euglycemia is to regulate insulin and glucagon secretion from pancreatic β- and α-cells, respectively. Somatostatin regulates insulin secretion by decreasing the intracellular levels of cAMP, inhibition of voltage-gated calcium channels (VGCC), activation of the G protein-activated inward rectifier K+ channel (GIRK), and direct inhibition of insulin exocytosis. Several studies have evaluated the effect of somatostatin, somatostatin peptide analogs, and a limited number of nonpeptide somatostatin receptor agonists on insulin secretion in static assays using isolated human islets. However, the lack of highly selective agonists has made the interpretation of the contribution of SST receptor sub-types difficult to discern. Our programs for the treatment of hyperinsulinism, acromegaly, and other indications have led to the development of selective nonpeptide SST2, SST3, SST4, and SST5 agonists, possessing EC50s & lt; 1 nM in cell-based assays of receptor activation and selectivity & gt; 130 times over the other members of the family. The ability of these selective nonpeptide agonists to regulate glucose- and tolbutamide-stimulated dynamic insulin secretion from human islets was evaluated using a perifusion system (Biorep, FL). We found that selective SST2 and SST5 agonists potently suppressed dynamic insulin secretion in contrast to SST3 or SST4 selective agonists. Importantly, SST5 agonists were shown to have a greater effect than selective SST2 agonists or diazoxide, demonstrating their potential utility in human conditions such as congenital HI. In addition, SST5 activation is also known to have a smaller effect on glucagon secretion and is also less prone to agonist-driven desensitization than SST2 activation. Taken together, these studies support our program to identify, characterize, and develop potent, nonpeptide, orally-bioavailable, selective SST5 agonists with appropriate pharmaceutical and safety characteristics for the treatment of congenital HI.
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2021
    detail.hit.zdb_id: 2881023-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 4, No. Supplement_1 ( 2020-05-08)
    Abstract: Congenital hyperinsulinism (CHI) results from mutations within the insulin secretion pathway and is characterized by excessive and/or inappropriate insulin secretion by pancreatic islet β-cells. CHI is the most common cause of persistent hypoglycemia in newborns and infants and is estimated to affect 1:2500 to 1:50,000 live births. Prompt recognition and treatment are vital to prevent coma, long-term neurological complications, and even death. If medical control of CHI is unsuccessful, a near-total pancreatectomy may be required, but hypoglycemia often persists. The neuropeptide somatostatin is an important modulator of pancreatic hormonal signaling and activity at different somatostatin receptor (sst) subtypes dictates the suppression of insulin and/or glucagon. The injectable peptide drugs octreotide and lanreotide are potent sst2 agonists used to treat CHI, but in addition to suppressing insulin, the sst2 activity of these peptides may also inhibit glucagon secretion, potentially reducing effectiveness and compromising a key defense against hypoglycemia. Glucagon secretion from α-cells is inhibited through activation of sst2 receptors, while insulin secretion from β-cells is inhibited through activation of sst2 and sst5. We therefore hypothesize that agonists selectively targeting sst5 and lacking sst2 activity will offer an improved efficacy/safety profile for patients with hyperinsulinemic hypoglycemia. Using iterative medicinal chemistry and pharmacology, Crinetics has discovered several classes of highly potent, orally bioavailable, small molecule sst-subtype selective agonists with drug-like pharmaceutical properties. Our discovery efforts aimed at finding a compound to treat CHI have yielded potent and selective nonpeptide sst5 agonists with sub-nanomolar EC50s in cell-based assays of receptor activation. Insulin secretion from isolated human and rat islets was suppressed upon exposure to sst5 agonists. Potent and selective sst5 agonists were then evaluated in a number acute and repeat dose in vivo models (e.g., oGTT, fed/fasted conditions, sulfonylurea-induced hypoglycemia) to assess physiological effects and to gain mechanistic insights. As predicted by the in vitro pharmacology, selective nonpeptide sst5 agonists suppressed insulin secretion and raised blood glucose levels in each model, while having minimal effects on glucagon secretion. Leading sst5 agonists were also evaluated for drug like characteristics, including stability in liver microsomes, lack of inhibition of cytochromes P450 and the hERG ion channel, and were shown to exhibit good exposure upon oral dosing in both rats and dogs. The culmination of these studies has led to a subset of candidate molecules that are being evaluated in genotoxicity, safety pharmacology, and general toxicity studies to determine the molecule most suitable for evaluation in human clinical trials.
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2020
    detail.hit.zdb_id: 2881023-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 4, No. Supplement_1 ( 2020-05-08)
    Abstract: Cushing’s disease (CD) and Ectopic ACTH syndrome (EAS) stem from excess circulating adrenocorticotropic hormone (ACTH) and resulting hypercortisolemia. In CD, excess ACTH is secreted from pituitary tumors, whereas excess ACTH in EAS arises from nonpituitary tumors. ACTH acts on the adrenal melanocortin type 2 (MC2) receptor to control the synthesis and secretion of adrenal hormones, including the stress hormone cortisol (corticosterone in rats) which accounts for the comorbidities of CD and EAS. Availability of a potent ACTH antagonist that can normalize cortisol in patients with diseases of excess ACTH will be a major advance in endocrinology. Additionally, an ACTH antagonist will have utility in congenital adrenal hyperplasia (CAH) because of its ability to block production of excess adrenal androgens. Crinetics is evaluating and developing ACTH antagonists for the treatment of diseases of excess ACTH. To our knowledge, these compounds represent the first potent nonpeptide ACTH antagonists to demonstrate in vitro potency and in vivo efficacy. As a result, the direct effects of sustained MC2 receptor blockade on the structure and function of the adrenal gland have never been able to be assessed. We examined the effects of several orally bioavailable ACTH antagonists across a range of doses on Sprague-Dawley rat adrenal gland weight, histology, and hormone levels in repeat dosing (7-14 days) studies. Sustained MC2 receptor antagonism dose dependently blocked activity of ACTH at the level of the adrenal gland and reduced plasma corticosterone levels. In the normal rat, this resulted in dose-dependent atrophy of the adrenal gland as assessed by organ weights and microscopically. The atrophy was primarily observed in the cortisol producing zona fasciculata, as well as in the zona reticularis, with smaller reductions noted in the aldosterone producing zona glomerulosa. Additionally, hypertrophy of the adrenal glands caused by continuous subcutaneous administration of exogenous ACTH was reversed by treatment with an ACTH antagonist. The adrenal effects were accompanied by expected changes in corticosterone levels. These preclinical findings demonstrate the therapeutic potential of ACTH antagonism and provide a strong rationale for development of an orally bioavailable drug that can be used to combat CD, EAS, and CAH.
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2020
    detail.hit.zdb_id: 2881023-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 4 ( 2004-01-27), p. 941-946
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 4 ( 2004-01-27), p. 941-946
    Abstract: For visual pigments, a covalent bond between the ligand (11- cis -retinal) and receptor (opsin) is crucial to spectral tuning and photoactivation. All photoreceptors have retinal bound via a Schiff base (SB) linkage, but only UV-sensitive cone pigments have this moiety unprotonated in the dark. We investigated the dynamics of mouse UV (MUV) photoactivation, focusing on SB protonation and the functional role of a highly conserved acidic residue (E108) in the third transmembrane helix. On illumination, wild-type MUV undergoes a series of conformational changes, batho → lumi → meta I , finally forming the active intermediate meta II . During the dark reactions, the SB becomes protonated transiently. In contrast, the MUV-E108Q mutant formed significantly less batho that did not decay through a protonated lumi . Rather, a transition to meta I occurred above ≈240 K, with a remarkable red shift (λ max ≈ 520 nm) accompanying SB protonation. The MUV-E108Q meta I → meta II transition appeared normal but the MUV-E108Q meta II decay to opsin and free retinal was dramatically delayed, resulting in increased transducin activation. These results suggest that there are two proton donors during the activation of UV pigments, the primary counterion E108 necessary for protonation of the SB during lumi formation and a second one necessary for protonation of meta I . Inactivation of meta II in SWS1 cone pigments is regulated by the primary counterion. Computational studies suggest that UV pigments adopt a switch to a more distant counterion, E176, during the lumi to meta I transition. The findings with MUV are in close analogy to rhodopsin and provides further support for the importance of the counterion switch in the photoactivation of both rod and cone visual pigments.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 16 ( 2017-04-18)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 16 ( 2017-04-18)
    Abstract: Conformational equilibria of G-protein–coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron–electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence. In nanodiscs, however, an ensemble of pH-dependent conformational substates is observed, even at pH 6.0 where the MIIbH + form defined by proton uptake and optical spectroscopic methods is reported to be the sole species present in native disk membranes. In nanodiscs, the ensemble of substates in the photoactivated receptor spontaneously decays to that characteristic of the inactive state with a lifetime of ∼16 min at 20 °C. Importantly, transducin binding to the activated receptor selects a subset of the ensemble in which multiple substates are apparently retained. The results indicate that in a native-like lipid environment rhodopsin activation is not analogous to a simple binary switch between two defined conformations, but the activated receptor is in equilibrium between multiple conformers that in principle could recognize different binding partners.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 34, No. 17 ( 2006-10), p. 4722-4730
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2006
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of the Endocrine Society, The Endocrine Society, Vol. 5, No. Supplement_1 ( 2021-05-03), p. A167-A167
    Abstract: CRN04894 is an orally administered nonpeptide that is a potent and selective antagonist for adrenocorticotropic hormone (ACTH) acting at the melanocortin 2 receptor (MC2R) and is currently under development for the treatment of diseases of ACTH excess such as Cushing’s disease, congenital adrenal hyperplasia, and ectopic ACTH-secreting tumors. Cushing’s disease results from an adenoma derived from pituitary corticotropic cells that secrete excess ACTH, whereas ectopic ACTH syndrome arises from nonpituitary ACTH secreting tumors. Congenital adrenal hyperplasia is a genetic disease that results in cortisol deficiency leading to high levels of ACTH and adrenal androgens. Each of these indications is characterized by high ACTH levels that act on MC2R expressed in the adrenal cortex to drive pathological elevations of adrenally derived steroid hormones. CRN04894 blocks the action of ACTH at MC2R, providing a potential novel treatment for these diseases. Preclinical models of chronic hypercortisolemia include implantation of ACTH-secreting pituitary tumor cells in mice and continuous administration of ACTH via subcutaneously implanted osmotic pumps in rats. These models induce features consistent with human diseases of ACTH excess including hypercortisolemia and hypertrophy of the adrenal glands. We employed both rodent models to examine the pharmacodynamic effects of CRN04894 on corticosterone levels and adrenal gland morphology. In the mouse pituitary tumor model, subcutaneous inoculation of the ACTH-secreting mouse pituitary tumor cell line, AtT-20, into immunodeficient mice resulted in formation of tumors and increased plasma ACTH and corticosterone levels. Repeated daily oral administration of CRN04894 for 14 days dose-dependently and robustly suppressed plasma corticosterone levels in mice with AtT-20 tumors. In the rat model, subcutaneous implantation of osmotic pumps delivering ACTH resulted in increased corticosterone levels, reduction in body weight, and hypertrophy of the adrenal glands after 7 days. Daily oral administration of CRN04894 over 7 days dose-dependently suppressed corticosterone levels, mitigated the effect of ACTH excess on body weight, and rescued the adrenal gland hypertrophy. These findings provide evidence that CRN04894 functions as an effective ACTH antagonist at MC2R to suppress adrenal corticosterone secretion in both mouse and rat models of ACTH excess and hypercortisolemia, thus providing a strong rationale for its potential therapeutic utility in diseases of ACTH excess. This work was supported in part by an SBIR grant from the NIH awarded to Dr. Struthers (R43- DK115245)
    Type of Medium: Online Resource
    ISSN: 2472-1972
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2021
    detail.hit.zdb_id: 2881023-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: ACS Medicinal Chemistry Letters, American Chemical Society (ACS), Vol. 14, No. 1 ( 2023-01-12), p. 66-74
    Type of Medium: Online Resource
    ISSN: 1948-5875 , 1948-5875
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2023
    detail.hit.zdb_id: 2532386-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2006
    In:  Biochemistry Vol. 45, No. 17 ( 2006-05-01), p. 5538-5550
    In: Biochemistry, American Chemical Society (ACS), Vol. 45, No. 17 ( 2006-05-01), p. 5538-5550
    Type of Medium: Online Resource
    ISSN: 0006-2960 , 1520-4995
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2006
    detail.hit.zdb_id: 1472258-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...