GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-08-24)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-08-24)
    Abstract: The diverse impacts of anthropogenic climate change in the spatiotemporal distribution of global freshwater are generally addressed through global scale studies, which suffer from uncertainties arising from coarse spatial resolution. Multi-catchment, regional studies provide fine-grained details of these impacts but remain less explored. Here, we present a comprehensive analysis of climate change impacts on the hydrology of 19 river basins from different geographical and climatic conditions in South and Southeast Asia. We find that these two regions will get warmer (1.5 to 7.8 °C) and wetter (− 3.4 to 46.2%) with the expected increment in river flow (− 18.5 to 109%) at the end of the twenty-first century under climate change. An increase in seasonal hydro-climatic extremes in South Asia and the rising intensity of hydro-climatic extremes during only one season in Southeast Asia illustrates high spatiotemporal variability in the impact of climate change and augments the importance of similar studies on a larger scale for broader understanding.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Natural Hazards and Earth System Sciences Vol. 22, No. 3 ( 2022-03-22), p. 967-983
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 22, No. 3 ( 2022-03-22), p. 967-983
    Abstract: Abstract. Water infrastructure development is considered necessary to drive economic growth in the Mekong region of mainland Southeast Asia. Yet the current understanding of hydrological and flood pattern changes associated with infrastructural development still contains several knowledge gaps, such as the interactions between multiple drivers, which may have serious implications for water management, agricultural production, and ecosystem services. This research attempts to conduct a cumulative assessment of basin-wide hydropower dam construction and irrigation expansion, as well as climate change, implications on discharge, and flood changes in the Cambodian Mekong floodplain. These floodplains offer important livelihoods for a considerable part of the 6.4 million people living on them, as they are among the most productive ecosystems in the world – driven by the annual flood pulse. To assess the potential future impacts, we used an innovative combination of three models: Mekong basin-wide distributed hydrological model IWRM-VMod, with the Mekong delta 1D flood propagation model MIKE-11 and 2D flood duration and extent model IWRM-Sub enabling detail floodplain modelling. We then ran scenarios to approximate possible conditions expected by around 2050. Our results show that the monthly and seasonal hydrological regimes (discharges, water levels, and flood dynamics) will be subject to substantial alterations under future development scenarios. Projected climate change impacts are expected to decrease dry season flows and increase wet season flows, which is in opposition to the expected alterations under development scenarios that consider both hydropower and irrigation. The likely impact of decreasing water discharge in the early wet season (up to −30 %) will pose a critical challenge to rice production, whereas the likely increase in water discharge in the mid-dry season (up to +140 %) indicates improved water availability for coping with drought stresses and sustaining environmental flows. At the same time, these changes would have drastic impacts on total flood extent, which is projected to decline by around 20 %, having potentially negative impacts on floodplain productivity and aquaculture, whilst reducing the flood risk to more densely populated areas. Our findings demonstrate the substantial changes that planned infrastructural development will have on the area, potentially impacting important ecosystems and people's livelihoods, calling for actions to mitigate these changes as well as planning potential adaptation strategies.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Environmental Research, Elsevier BV, Vol. 220 ( 2023-03), p. 115087-
    Type of Medium: Online Resource
    ISSN: 0013-9351
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 205699-9
    detail.hit.zdb_id: 1467489-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...