GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2014
    In:  Remote Sensing Vol. 6, No. 6 ( 2014-05-27), p. 4831-4869
    In: Remote Sensing, MDPI AG, Vol. 6, No. 6 ( 2014-05-27), p. 4831-4869
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2014
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 15, No. 3 ( 2023-01-30), p. 793-
    Abstract: This paper describes the demonstration of a regional high-resolution level-3 (L3) altimeter data unification and altimeter combination system (DUACS) developed with support from the French space agency (CNES). Deduced from full-rate (20 Hz to 40 Hz) level-2 (L2) altimeter measurements, this product provides sea level anomalies (SLA) and other essential physical variables at a spatial resolution of one sample every ~1 km over the North Atlantic Ocean. This allows us to resolve wavelengths from ~35 km to ~55 km depending on the altimeter considered. This was made possible by recent advances in radar altimeter processing for both synthetic aperture radar (SAR) and low-resolution-mode (LRM) measurements, as well as improvements made to different stages of the DUACS processing chain. Firstly, the new adaptive and low-resolution with range migration correction (LR-RMC) processing techniques were considered for Jason and Sentinel-3 (S3A), respectively. They significantly reduce errors at short wavelengths, and the adaptive processing also reduces possible land contamination near the coast. Next, up-to-date geophysical and environmental corrections were selected for this production. This includes specific corrections intended to reduce the measurement noise on LRM measurements and thus enhance the observability at short wavelengths. Compared with the 1 Hz product, the observable wavelengths reached with the demonstration high-resolution product are reduced by up to one third, or up to half in the northeast Atlantic region. The residual noises were optimally filtered from full-rate measurements, taking into consideration the different observing capabilities of the altimeters processed. A specific data recovery strategy was applied, significantly optimizing the data availability, both in the coastal and open ocean areas. This demonstration L3 product is thus better resolved than the conventional 1 Hz product, especially near the coast, where it is defined up to ~5 km against ~10 km for the 1 Hz version. Multi-mission cross-calibration processing was also optimized with an improved long-wavelength error (LWE) correction, leading to a better consistency between tracks, with a 9–15% reduction in SLA variance at cross-overs. The new L3 product improves the overall consistency with tide gauge measurements, with a reduction in SLA differences variance by 5 and 17% compared with the 1 Hz product from the S3A and Jason-3 (J3) measurements, respectively. Primarily intended for regional applications, this product can significantly contribute to improving high-resolution numerical model output via data assimilation. It also opens new perspectives for a better understanding of regional sea-surface dynamics, with an improved representation of the coastal currents and a refined spectral content revealing the unbalanced signal.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Ocean Science Vol. 18, No. 3 ( 2022-05-05), p. 609-625
    In: Ocean Science, Copernicus GmbH, Vol. 18, No. 3 ( 2022-05-05), p. 609-625
    Abstract: Abstract. Swath altimetry is likely to revolutionize our ability to monitor and forecast ocean dynamics. To meet the requirements of the EU Copernicus Marine Service, a constellation of two wide-swath altimeters is envisioned for the long-term (post-2030) evolution of the Copernicus Sentinel 3 topography mission. A series of observing system simulation experiments (OSSEs) is carried out to quantify the expected performances. The OSSEs use a state-of-the-art high-resolution (1/12∘) global ocean data assimilation system similar to the one used operationally by the Copernicus Marine Service. Flying a constellation of two wide-swath altimeters will provide a major improvement of our capabilities to monitor and forecast the oceans. Compared to the present situation with three nadir altimeters flying simultaneously, the sea surface height (SSH) analysis and 7 d forecast error are globally reduced by about 50 % in the OSSEs. With two wide-swath altimeters, the quality of SSH 7 d forecasts is equivalent to the quality of SSH analysis errors from three nadir altimeters. Our understanding of ocean currents is also greatly improved (30 % improvements at the surface and 50 % at 300 m depth). The resolution capabilities will be drastically improved and will be closer to 100 km wavelength compared to about 250 km today. Flying a constellation of two wide-swath altimeters thus looks to be a very promising solution for the long-term evolution of the Sentinel 3 constellation and the Copernicus Marine Service.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Earth System Science Data Vol. 14, No. 3 ( 2022-03-10), p. 1087-1107
    In: Earth System Science Data, Copernicus GmbH, Vol. 14, No. 3 ( 2022-03-10), p. 1087-1107
    Abstract: Abstract. This paper presents the new global Mesoscale Eddy Trajectory Atlases (META3.1exp DT all-satellites, https://doi.org/10.24400/527896/a01-2021.001, Pegliasco et al., 2021a; and META3.1exp DT two-satellites, https://doi.org/10.24400/527896/a01-2021.002, Pegliasco et al., 2021b), composed of eddy identifications and trajectories produced with altimetric maps. The detection method used is inherited from the py-eddy-tracker (PET) algorithm developed by Mason et al. (2014), and is optimized to efficiently manage large datasets, and thus long time series. These products are an improvement on the earlier META2.0 product, which was produced by SSALTO/DUACS and distributed by AVISO+ (https://aviso.altimetry.fr, last access: 8 March 2022) with support from CNES, in collaboration with Oregon State University and support from NASA, and based on the Chelton et al. (2011) code. META3.1exp provides supplementary eddy information, such as eddy shapes, eddy edges, maximum speed contours, and mean eddy speed profiles from the center to the periphery. The tracking algorithm is based on overlapping contours, includes virtual observations, and acts as a filter with respect to the shortest trajectories. The absolute dynamic topography (ADT) field is now used for eddy detection, instead of the previous sea level anomaly (SLA) maps, in order to better represent the dynamics in the more energetic oceanic regions and in the vicinity of coasts and islands. To evaluate the impact of the changes from META2.0 to META3.1exp, a comparison methodology has been applied. The similarity coefficient (SC) is based on the ratio of the eddy overlaps to their cumulative area, and allows for extensive comparison of the different datasets in terms of geographic distribution, statistics on the main physical characteristics, changes in the lifetimes of the trajectories, etc. After evaluating the impact of each change separately, we conclude that the major differences between META3.1exp and META2.0 are due to the change in the detection algorithm. META3.1exp contains smaller eddies and trajectories lasting at least 10 d; these were not available in the META2.0 product. Nevertheless, 55 % of the structures in META2.0 are similar to META3.1exp, thereby ensuring continuity between the two products and their physical characteristics. Geographically, the eddy distributions differ mainly in the strong current regions, where the mean dynamic topography (MDT) gradients are sharp. The additional information on the eddy contours allows for more accurate collocation of mesoscale structures with data from other sources, and so META3.1exp is recommended for multi-disciplinary application.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2023
    In:  Ocean Science Vol. 19, No. 2 ( 2023-03-31), p. 363-379
    In: Ocean Science, Copernicus GmbH, Vol. 19, No. 2 ( 2023-03-31), p. 363-379
    Abstract: Abstract. The ocean's sea surface height (SSH) field is a complex mix of motions in geostrophic balance and unbalanced motions including high-frequency tides, internal tides, and internal gravity waves. Barotropic tides are well estimated for altimetric SSH in the open ocean, but the SSH signals of internal tides remain. The transition scale, Lt, at which these unbalanced ageostrophic motions dominate balanced geostrophic motions is estimated for the first time using satellite altimetry. Lt is critical to define the spatial scales above which surface geostrophic currents can be inferred from SSH gradients. We use a statistical approach based on the analysis of 1 Hz altimetric SSH wavenumber spectra to obtain four geophysical parameters that vary regionally and seasonally: the background error, the spectral slope in the mesoscale range, a second spectral slope at smaller scales, and Lt. The mesoscale slope and error levels are similar to previous studies based on satellite altimetry. The break in the wavenumber spectra to a flatter spectral slope can only be estimated in midlatitude regions where the signal exceeds the altimetric noise level. Small values of Lt are observed in regions of energetic mesoscale activity, while larger values are observed towards low latitudes and regions of lower mesoscale activity. These results are consistent with recent analyses of in situ observations and high-resolution models. Limitations of our results and implications for reprocessed nadir and future swath altimetric missions are discussed.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Remote Sensing, MDPI AG, Vol. 15, No. 11 ( 2023-06-02), p. 2910-
    Abstract: A new mean sea surface (MSS) was determined by focusing on the accuracy provided by exact-repeat altimetric missions (ERM) and the high spatial coverage of geodetic (or drifting) missions. The goal was to obtain a high-resolution MSS that would provide centimeter-level precision. Particular attention was paid to the homogeneity of the oceanic content of this MSS, and specific processing was also carried out, particularly on the data from the geodetic missions. For instance, CryoSat-2 and SARAL/AltiKa data sampled at high frequencies were enhanced using a dedicated filtering process and corrected from oceanic variability using the results of the objective analysis of sea-level anomalies provided by DUACS multi-missions gridded sea-level anomalies fields (MSLA). Particular attention was also paid to the Arctic area by combining traditional sea-surface height (SSH) with the sea levels estimated within fractures in the ice (leads). The MSS was determined using a local least-squares collocation technique, which provided an estimation of the calibrated error. Furthermore, our technique takes into account altimetric noises, ocean-variability-correlated noises, and along-track biases, which are determined independently for each observation. Moreover, variable cross-covariance models were fitted locally for a more precise determination of the shortest wavelengths, which were shorter than 30 km. The validations performed on this new MSS showed an improvement in the finest topographic structures, with amplitudes exceeding several cm, while also continuing to refine the correction of the oceanic variability. Overall, the analysis of the precision of this new CNES_CLS 2022 MSS revealed an improvement of 40% compared to the previous model, from 2015.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Remote Sensing, MDPI AG, Vol. 14, No. 23 ( 2022-11-30), p. 6070-
    Abstract: The Surface Water and Ocean Topography (SWOT) mission will be affected by various sources of systematic errors, which are correlated in space and in time. Their amplitude before calibration might be as large as tens of centimeters, i.e., able to dominate the mission error budget. To reduce their magnitude, we developed so-called data-driven (or empirical) calibration algorithms. This paper provided a summary of the overall problem, and then presented the calibration framework used for SWOT, as well as the pre-launch performance simulations. We presented two complete algorithm sequences that use ocean measurements to calibrate KaRIN globally. The simple and robust Level-2 algorithm was implemented in the ground segment to control the main source of error of SWOT’s hydrology products. In contrast, the more sophisticated Level-3 (multi-mission) algorithm was developed to improve the accuracy of ocean products, as well as the one-day orbit of the SWOT mission. The Level-2 algorithm yielded a mean inland error of 3–6 cm, i.e., a margin of 25–80% (of the signal variance) with respect to the error budget requirements. The Level-3 algorithm yielded ocean residuals of 1 cm, i.e., a variance reduction of 60–80% with respect to the Level-2 algorithm.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Remote Sensing, MDPI AG, Vol. 13, No. 4 ( 2021-02-11), p. 646-
    Abstract: The resolutions of current global altimetric gravity models and mean sea surface models are around 12 km wavelength resolving 6 km features, and for many years it has been difficult to improve the resolution further in a systematic way. For both Jason 1 and 2, a Geodetic Mission (GM) has been carried out as a part of the Extension-of-Life phase. The GM for Jason-1 lasted 406 days. The GM for Jason-2 was planned to provide ground-tracks with a systematic spacing of 4 km after 2 years and potentially 2 km after 4 years. Unfortunately, the satellite ceased operation in October 2019 after 2 years of Geodetic Mission but still provided a fantastic dataset for high resolution gravity recovery. We highlight the improvement to the gravity field which has been derived from the 2 years GM. When an Extension-of-Life phase is conducted, the satellite instruments will be old. Particularly Jason-2 suffered from several safe-holds and instrument outages during the GM. This leads to systematic gaps in the data-coverage and degrades the quality of the derived gravity field. For the first time, the Jason-2 GM was “rewound” to mitigate the effect of the outages, and we evaluate the effect of “mission rewind” on gravity. With the recent successful launch of Sentinel-6 Michael Freilich (S6-MF, formerly Jason CS), we investigate the possibility creating an altimetric dataset with 2 km track spacing as this would lead to fundamental increase in the spatial resolution of global altimetric gravity fields. We investigate the effect of bisecting the ground-tracks of existing GM to create a mesh with twice the resolution rather than starting all over with a new GM. The idea explores the unique opportunity to inject Jason-3 GM into the same orbital plane as used for Jason-2 GM but bisecting the existing Jason-2 tracks. This way, the already 2-years Jason-2 GM could be used to create a 2 km grid after only 2 years of Jason-3 GM, rather than starting all over with a new GM for Jason-3.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Advances in Space Research, Elsevier BV, Vol. 68, No. 2 ( 2021-07), p. 319-363
    Type of Medium: Online Resource
    ISSN: 0273-1177
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2023311-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2012
    In:  IEEE Transactions on Geoscience and Remote Sensing Vol. 50, No. 6 ( 2012-06), p. 2325-2344
    In: IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers (IEEE), Vol. 50, No. 6 ( 2012-06), p. 2325-2344
    Type of Medium: Online Resource
    ISSN: 0196-2892 , 1558-0644
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2012
    detail.hit.zdb_id: 2027520-1
    SSG: 16,13
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...