GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cell, Elsevier BV, Vol. 136, No. 3 ( 2009-02), p. 551-564
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular and Cellular Endocrinology, Elsevier BV, Vol. 451 ( 2017-08), p. 88-96
    Type of Medium: Online Resource
    ISSN: 0303-7207
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1500651-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2222-2222
    Abstract: Introduction: Th9 cells are critical mediators of allergy and anti-cancer immunity. The E3 ubiquitin ligase Cbl-b modulates T cell activation via regulation of the T cell receptor (TCR) activation threshold as well as by inducing TGF-β sensitivity, which is a critical differentiation factor for Th9 differentiation. Even though some evidence shows that Cbl-b impairs Th9 differentiation by targeting IL-4 dependent STAT6 activation, a complete suppression of Th9 differentiation in the absence of both STAT6 and Cbl-b is not achieved, implying the involvement of additional mechanisms. In this study, we evaluate the role of Cbl-b in early stages of TGF-β dependent Th9 differentiation. Methods: Th9 cells were generated from WT and cblb-deficient naïve CD4+ T cells. After maximum 3 days in presence of IL-4, TGF-β and anti-IFN-γ antibodies, differentiation was determined by the quantification of cytokines, mainly IL-9, and that of the two required transcription factors for Th9 differentiation, namely IRF4 and PU.1. Microarray assay revealed gene candidates that were further validated by mRNA and protein expression analysis. The functional role of Cbl-b was tested in a Th9-mediated murine lung allergy model, in which mice were challenged by intratracheal injections of house dust mite (HDM) extracts. Results: cblb-deficient naïve T cells more efficiently differentiate into Th9 cells after 3 days in culture, express in parallel PU.1 more intensively compared to WT Th9 cells, while retaining similar expression levels of IRF4, another important Th9 differentiation factor. Increased IL-9 level is not based on cblb -deficient T cell hyperproliferation, as we show an increased IL-9 production per cell by using combination of CFSE with intracellular IL-9 staining. Microarray analysis revealed that RUNX1, a known transcriptional modulator of PU.1, is more rapidly down-regulated in cblb-deficient Th9 cells compared to WT Th9 cells. Accordingly, knocking down RUNX1 by siRNA in naïve CD4+ T cells and subsequently differentiating them into Th9 cells, also induces higher IL-9 expression at the mRNA and protein levels in RUNX1-depleted Th9 cells compared to control scrambled siRNA-nucleofected Th9 cells. In the HDM murine allergy model, cblb-deficient mice have a higher lung inflammation as mirrored by increased eosinophils in the BAL and in the lungs, as well as by increased IgE production in the blood. These are also paralleled by an increased IL-9 expression level in the lungs of the allergic cblb -deficient mice. Conclusions: Cbl-b critically limits Th9 differentiation and may thus be a potential target to modify Th9 cell generation in allergy or cancer. Future studies will validate the molecular link that exists between Cbl-b and the RUNX1-dependent IL-9 expression as well as the in vivo significance of increased Th9 cell differentiation in cblb-deficient animal models of lung inflammation and cancer. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society of Hematology ; 2013
    In:  Blood Vol. 122, No. 21 ( 2013-11-15), p. 16-16
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 16-16
    Abstract: We recently demonstrated that ruxolitinib (INCB018424), the first approved JAK1/JAK2 inhibitor for treatment of myelofibrosis (MF), exerts potent anti-inflammatory activity. This may at least in part explain higher infection rates observed in ruxolitinib-treated patients. NK cells are critical for cancer-immune surveillance and cytokine-mediated signals are central for proper NK cell activation. We here aimed to characterize in detail the effects of JAK1/2 inhibition on human NK cells. Methods Highly purified CD56+ NK cells were isolated from human peripheral buffy coats by magnetic bead isolation and subsequently exposed to increasing concentrations of ruxolitinib (0.1-10 µM). Cytokine (1000U/ml IL-2, 25ng/ml IL-15)-induced NK cell proliferation was analyzed by CFSE dilution. Phenotypic and functional NK cell activation markers (NKp46, NKG2D, Granzyme B, CD16, and CD69) were analyzed by flow cytometry (including CD107a expression for degranulation). NK cell function was tested by flow-cytometry-based killing assays and quantification of IFN-γ production upon stimulation with either MHC class I-deficient K562 target cells or cytokines (IL-12, IL-18). In addition, phenotypic and functional analyses were also tested during NK receptor activation via plate-bound activating NKp46 antibodies. Signaling events were analyzed by Western Blot analysis to detect phosphorylation of JAK1 and JAK2 as well as by applying phospho-flow technology to evaluate ruxolitinib-mediated changes of cytokine-dependent signalling cascades (pS6, pSTAT1, pSTAT3, pSTAT5, pERK, pAKT, pP38, and pZAP70). Results Our results demonstrate provide first evidence that ruxolitinib profoundly affects cytokine-induced NK cell activation. This includes a significant and dose-dependent reduction of NK cell proliferation, reduced induction of activation-associated surface markers (including NKp46, NKG2D, Granzyme B, CD16, CD69) as well as impaired killing activity against the classical NK target cell line K562. In addition, all main functional activities of NK cells are down-regulated as shown by reduced cytotoxic capacity, impaired degranulation and IFN-γ production. After wash-out, the inhibitory effects of ruxolitinib on NK cells are fully reversible, as shown by proper re-activation by cytokines. In contrast to cytokine-mediated NK cell activation, stimulation via the NK-specific receptor NKp46 are not affected by ruxolitinib. Of note, ruxolitinib does not affect NK cell viability. On a molecular level, phospho-flow analyses revealed that cytokine associated signaling events, such as phosphorylation of STAT5 and S6 were dose-dependently reduced by ruxolitinib in primary human NK cells. Conclusions Ruxolitinib strongly inhibits NK cell activation leading to impaired proliferation and functional activity. Experiments verifying these effects in patients are currently ongoing and will be presented at the meeting. Our findings may have important clinical implications, when considering the application of ruxolitinib as GvHD therapy, because NK cells are critically involved in the GvL effect after allogeneic stem cell transplantation. Disclosures: Wolf: Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO)
    Abstract: Selinexor inhibits exportin-1 (XPO1) resulting in nuclear accumulation of tumor suppressor proteins including p53 and has clinical activity in endometrial cancer (EC). The primary end point was to assess progression-free survival (PFS) with once-weekly oral selinexor in patients with advanced or recurrent EC. PATIENTS AND METHODS ENGOT-EN5/GOG-3055/SIENDO was a randomized, prospective, multicenter, double-blind, placebo-controlled, phase III study at 107 sites in 10 countries. Patients 18 years or older with histologically confirmed EC were enrolled. All had completed a single line of at least 12 weeks of taxane-platinum combination chemotherapy and achieved partial or complete response. Patients were assigned to receive 80 mg oral selinexor once weekly or placebo with 2:1 random assignment (ClinicalTrials.gov identifier: NCT03555422 ). RESULTS Between January 2018 and December 2021, 263 patients were randomly assigned, with 174 allocated to selinexor and 89 to placebo. The median PFS was 5.7 months (95% CI, 3.81 to 9.20) with selinexor versus 3.8 months (95% CI, 3.68 to 7.39) with placebo (hazard ratio [HR], 0.76 [95% CI, 0.54 to 1.08] ; two-sided P = .126), which did not meet the criteria for statistical significance in the intent-to-treat population. Incorrect chemotherapy response stratification data for 7 (2.7%) patients were identified. In a prespecified exploratory analysis of PFS in audited stratification data, PFS for selinexor met the threshold for statistical significance (HR, 0.71; 95% CI, 0.499 to 0.996; two-sided P = .049). Furthermore, patients with the TP53 wild-type (wt) EC had a median PFS of 13.7 and 3.7 months with selinexor and placebo. The most common grade 3 treatment-related adverse events were nausea (9%), neutropenia (9%), and thrombocytopenia (7%). CONCLUSION The significance level for PFS was only met in the audited analysis. However, a preliminary analysis of a prespecified exploratory subgroup of patients with TP53wt EC showed promising results with selinexor maintenance therapy.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2023
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2013
    In:  Blood Vol. 122, No. 21 ( 2013-11-15), p. 2281-2281
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2281-2281
    Abstract: Recent discoveries of activating JAK mutations in patients with myeloproliferative diseases (MPNs) coupled with the so far known biology of JAKs in cytokine signaling provided the rationale for targeting these kinases in MPNs. Ruxolitinib (INCB018424) is the first JAK1/JAK2 inhibitor approved for treatment of patients with myelofibrosis (MF). Although ruxolitinib shows limited anti-clonal activity, a profound improvement of quality of life and splenomegaly in MF patients is observed and linked to a substantial reduction of MF-associated circulating pro-inflammatory cytokines and pro-angiogenic factors. JAK/STAT-signalling is known to be involved in the regulation of various immune cells including CD4+ T cells, which critically orchestrate inflammatory responses. To better understand how ruxolitinib is modulating CD4+ T cell response, we here provide an in depth analysis of CD4+ T cell function upon ruxolitinib exposure. Methods Highly purified CD4+ T cells isolated from healthy human PBMC from buffy coats were stimulated for 4 days with i) plate bound anti-CD3, ii) plate bound anti-CD3 and soluble anti-CD28 antibodies, iii) IL-2 in the presence of increasing concentrations of ruxolitinib (0.1µM – 10µM) or the respective vehicle control (DMSO). Phenotype and function were analyzed by flow cytometry. Cytokine production was quantified either by intracellular staining and subsequent flow cytometry or by flow-based bead assays (Human Th1/Th2 11plex FlowCytomix Multiplex). Proliferation was detected by CFSE dilution analysis using FACS. CD4+CD62L+ T cells obtained from C57BL/6 mice were isolated by using the CD4+CD62L+ T Cell Isolation Kit (Miltenyi Biotec) and subsequently differentiated into TH1, TH2, TH9, TH17 and iTreg. Polarization into the different CD4+ T cell subsets was induced by cytokine/antibody cocktails (TH1: IL-12 and anti-IL4; TH2: IL-4 and anti-IL12; TH9: IL-4, TGF-β and anti-IFNγ; iTreg: IL-2 and TGFβ; TH17: IL-6, TGFβ, IL-1b, anti-IFNγ and anti-IL4) together with anti-CD3 and anti-CD28. For analysis of apoptosis/necrosis induction, annexin/propidium iodide staining was applied. Signalling events were analyzed by phospho-flow technology to evaluate ruxolitinib-mediated changes of TCR- and/or cytokine-induced signalling cascades (using pS6, pSTAT1, pSTAT3, pSTAT5, pERK, pAKT, pP38, pFos, pJun and pZAP70 antibodies). Results CD4+ T cell proliferation is significantly and dose-dependently suppressed by ruxolitinib when T cells were activated by each of the three conditions tested. Of note, we could not detect any changes in the viability of ruxolitinib-exposed CD4+ T cells. In line with previous studies, production of pro-inflammatory cytokines such as IL-1β, IL-5, IL-6 and TNF-α were dose-dependently inhibited in ruxolitinib-exposed CD4+ T cells, although expression of the pro-inflammatory IL-8 was increased in a dose-dependent manner. Interestingly, despite the complete proliferation block, we also observed an increase in IL-2 and IFNγ particularly at the lower ruxolitinib concentrations (0.1μM) followed by a dose dependent reduction at higher dose-levels (10µM). After short-term activation of ruxolitinib-exposed CD4+ T cells by anti-CD3 and anti-CD28, proximal TCR signaling events (phosphorylation of SLP76 and ZAP70) were not affected, whereas a clear down-regulation of IL-2 induced STAT5 phosphorylation could be detected. After wash-out the ruxolitinib-induced inhibitory effects on CD4+ T cell function were fully reversible, as shown by induction of the T cell activation markers CD25 and CD69. Finally, we differentiated murine CD4+ naïve T cells into the various T Helper cell subsets and could provide clear evidence that the differentiation capacity of naïve CD4+ T cells into TH1, TH9, TH17 and iTreg was markedly reduced, whereas inhibition of Th2 differentiation was only marginally affected. The anti-inflammatory effects of ruxolitinib are currently tested in a TH9-dependent lung inflammation model in mice. Conclusion We could show that ruxolitinib potently affects CD4+ T cell biology. These data provide a rationale for testing JAK inhibitors in diseases triggered by hyperactive CD4+ T cells, such as autoimmune diseases. However, they also provide an explanation for the increased infection rates (i.e. viral reactivation and urinary tract infection) seen in ruxolitinib-treated patients. Disclosures: Wolf: Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: FEBS Letters, Wiley, Vol. 584, No. 12 ( 2010-06-18), p. 2681-2688
    Abstract: A variety of immunoregulatory signals to effector T cells from monocytes, macrophages and regulatory T cells act through cyclic adenosine monophosphate. In the effector T cell, the protein kinase A (PKA) type I isoenzyme localizes to lipid rafts during T cell activation and modulates directly the proximal events that take place after engagement of the T cell receptor. The most proximal target for PKA phosphorylation is C‐terminal Src kinase (Csk), which initiates a negative signal pathway that fine‐tunes the T cell activation process. The A kinase anchoring protein Ezrin colocalizes PKA and Csk by forming a supramolecular signaling complex consisting of PKA, Ezrin, Ezrin/radixin/moesin (ERM) binding protein of 50 kDa (EBP50), phosphoprotein associated with glycosphingolipid‐enriched membrane microdomains (GEMs) (PAG) and Csk.
    Type of Medium: Online Resource
    ISSN: 0014-5793 , 1873-3468
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 1460391-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2011
    In:  The Journal of Immunology Vol. 186, No. 9 ( 2011-05-01), p. 5119-5130
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 186, No. 9 ( 2011-05-01), p. 5119-5130
    Abstract: Type I protein kinase A (PKA) is targeted to the TCR-proximal signaling machinery by the A-kinase anchoring protein ezrin and negatively regulates T cell immune function through activation of the C-terminal Src kinase. RI anchoring disruptor (RIAD) is a high-affinity competitor peptide that specifically displaces type I PKA from A-kinase anchoring proteins. In this study, we disrupted type I PKA anchoring in peripheral T cells by expressing a soluble ezrin fragment with RIAD inserted in place of the endogenous A-kinase binding domain under the lck distal promoter in mice. Peripheral T cells from mice expressing the RIAD fusion protein (RIAD-transgenic mice) displayed augmented basal and TCR-activated signaling, enhanced T cell responsiveness assessed as IL-2 secretion, and reduced sensitivity to PGE2- and cAMP-mediated inhibition of T cell function. Hyperactivation of the cAMP–type I PKA pathway is involved in the T cell dysfunction of HIV infection, as well as murine AIDS, a disease model induced by infection of C57BL/6 mice with LP-BM5, a mixture of attenuated murine leukemia viruses. LP-BM5–infected RIAD-transgenic mice resist progression of murine AIDS and have improved viral control. This underscores the cAMP–type I PKA pathway in T cells as a putative target for therapeutic intervention in immunodeficiency diseases.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2011
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 11 ( 2015-06-01), p. 2187-2199
    Abstract: Ruxolitinib is a small-molecule inhibitor of the JAK kinases, which has been approved for the treatment of myelofibrosis, a rare myeloproliferative neoplasm (MPN), but clinical trials are also being conducted in inflammatory-driven solid tumors. Increased infection rates have been reported in ruxolitinib-treated patients, and natural killer (NK) cells are immune effector cells known to eliminate both virus-infected and malignant cells. On this basis, we sought to compare the effects of JAK inhibition on human NK cells in a cohort of 28 MPN patients with or without ruxolitinib treatment and 24 healthy individuals. NK cell analyses included cell frequency, receptor expression, proliferation, immune synapse formation, and cytokine signaling. We found a reduction in NK cell numbers in ruxolitinib-treated patients that was linked to the appearance of clinically relevant infections. This reduction was likely due to impaired maturation of NK cells, as reflected by an increased ratio in immature to mature NK cells. Notably, the endogenous functional defect of NK cells in MPN was further aggravated by ruxolitinib treatment. In vitro data paralleled these in vivo results, showing a reduction in cytokine-induced NK cell activation. Further, reduced killing activity was associated with an impaired capacity to form lytic synapses with NK target cells. Taken together, our findings offer compelling evidence that ruxolitinib impairs NK cell function in MPN patients, offering an explanation for increased infection rates and possible long-term side effects associated with ruxolitinib treatment. Cancer Res; 75(11); 2187–99. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3169-3169
    Abstract: Introduction: Ruxolitinib (INCB018424) is the first JAK inhibitor approved for treatment of myelofibrosis (MF). Ruxolitinib-induced reduction of splenomegaly and symptoms control is linked to a substantial suppression of MF-associated circulating pro-inflammatory and pro-angiogenic cytokines. However, an increased rate of infections in ruxolitinib-exposed patients with MF was recently described. Natural killer (NK) cells are innate immune effector cells eliminating malignant or virus-infected cells. Thus, the aim of this project was to define in more detail the impact of JAK inhibition on NK cell biology both in vitro and in vivo. Methods: 28 patients with myeloproliferative neoplasms (MPN) with or without ruxolitinib therapy and 12 healthy donors were analyzed for NK cell frequency, NK receptor expression and function. Phenotypic and functional NK cell markers (e.g. CD11b, CD27, KIR, NKG2A, NKG2D, NKp46, CD16, granzyme B, and perforin) were analyzed by FACS. NK cell function was evaluated by classical killing assays upon stimulation with MHC class I-deficient target cells K562. Finally, a set of additional in vitro experiments (e.g. analysis of lytic synapse formation by FACS and confocal microscopy) were performed to define in more detail the characteristics and potential mechanisms of ruxolitinib-induced NK cell dysfunction. Results: In addition to our recent finding that ruxolitinib induces NK cell dysfunction in vitro (e.g. reduced killing, degranulation and IFN-γ production), we here demonstrate that NK cell proliferation and cytokine-induced receptor expression as well as cytokine signalling are drastically impaired by ruxolitinib. Interestingly, reduced killing is at least in part due to a reduced capacity to form a mature lytic synapse with target cells. The significance of the in vitrofindings is underscored by a dramatically reduced proportion and absolute number of NK cells in ruxolitinib-treated MPN patients when compared to treatment-naïve patients or to healthy controls (mean percentage of NK cell frequency: ruxolitinib-naïve MPN patients 12.63% ±1.81; healthy donors 13.51% ±1.44; ruxolitinib-treated patients 5.47% ±1.27). A systematic analysis of NK cell receptor expression revealed that the reduction of NK cells in ruxolitinib-exposed individuals is most likely due to an impaired NK cell differentiation and maturation process, as reflected by a significantly increased ratio of immature to mature NK cells. Finally, the endogenous functional NK cell defect in MPN is further aggravated by intake of the JAK inhibitor ruxolitinib. Conclusion: We here provide compelling in vitro and in vivo evidence that inhibition of the JAK/STAT-pathway by ruxolitinib exerts substantial effects on the NK cell compartment in MPN patients due to the inhibition of NK cell differentiation and NK cell key functions. Our data may help to better understand the increased rate of severe infections and complement recent reports on ruxolitinib-induced immune dysfunction. Disclosures Koschmieder: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel, Accomodation, Expenses Other. Brümmendorf:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Wolf:Novartis: Consultancy, Honoraria, Research Funding, Travel and Accommodation Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...