GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1985
    In:  pure and applied geophysics Vol. 123, No. 4 ( 1985-7), p. 646-672
    In: pure and applied geophysics, Springer Science and Business Media LLC, Vol. 123, No. 4 ( 1985-7), p. 646-672
    Type of Medium: Online Resource
    ISSN: 0033-4553 , 1420-9136
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1985
    detail.hit.zdb_id: 1464028-4
    detail.hit.zdb_id: 216719-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2011
    In:  Journal of Geophysical Research: Oceans Vol. 116, No. C11 ( 2011-11)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 116, No. C11 ( 2011-11)
    Abstract: Nordic Seas region is subject to strong decadal ocean variability The ocean variability is mainly due to changes in the inflow of Atlantic Water The most recent anomaly began in 1999, is massive, and continues
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2011
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Climate, American Meteorological Society, Vol. 19, No. 11 ( 2006-06-01), p. 2122-2143
    Abstract: The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2018
    In:  Journal of Geophysical Research: Oceans Vol. 123, No. 5 ( 2018-05), p. 3144-3163
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 123, No. 5 ( 2018-05), p. 3144-3163
    Abstract: Current atmospheric reanalysis heat flux estimates differ by 10–30 W m^–2 We identify the errors and reduce them to 〈 ±5 W m^–2 at most locations The Southern Ocean is shown to be a source of heat to the atmosphere
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2018
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Hydrological Sciences Journal, Informa UK Limited, Vol. 44, No. 3 ( 1999-06-01), p. 407-415
    Type of Medium: Online Resource
    ISSN: 0262-6667 , 2150-3435
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 1999
    detail.hit.zdb_id: 2180448-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 1 ( 2011-01-01), p. 84-93
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 1 ( 2011-01-01), p. 84-93
    Abstract: Historical bathythermograph datasets are known to be biased, and there have been several efforts to model this bias. Three different correction models of temperature bias in the historical bathythermograph dataset are compared here: the steady model of Hanawa et al. and the time-dependent models of Levitus et al. and Wijffels et al. The impact of these different models is examined in the context of global analysis experiments using the Simple Ocean Data Assimilation system. The results show that the two time-dependent bias models significantly reduce warm bias in global heat content, notably in the 10 years starting in the early 1970s and again in the early 1990s. Overall, the Levitus et al. model has its greatest impact near the surface and the Wijffels et al. model has its greatest impact at subtropical thermocline depths. Examination of the vertical structure of temperature error shows that at thermocline depths the Wijffels et al. model overcompensates, leading to a slight cool bias, while at shallow levels the same model causes a slight warm bias in the central and eastern subtropics and at thermocline depths on the equator in the Pacific Ocean as a result of reduced vertical entrainment. The results also show that the bias-correction models may alter the representation of interannual variability. During the 1997/98 El Niño and the subsequent La Niña the Levitus et al. model, which has its main impact at shallow depths, reduces the 50-m temperature anomalies in the eastern equatorial Pacific by 10%–20% and strengthens the zonal currents by up to 50%. The Wijffels et al. correction, which has its main impact at deeper levels, has much less effect on the oceanic expression of ENSO.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 17 ( 2009-09-01), p. 4539-4556
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 17 ( 2009-09-01), p. 4539-4556
    Abstract: Weekly average satellite-based estimates of latent heat flux (LHTFL) are used to characterize spatial patterns and temporal variability in the intraseasonal band (periods shorter than 3 months). As expected, the major portion of intraseasonal variability of LHTFL is due to winds, but spatial variability of humidity and SST are also important. The strongest intraseasonal variability of LHTFL is observed at the midlatitudes. It weakens toward the equator, reflecting weak variance of intraseasonal winds at low latitudes. It also decreases at high latitudes, reflecting the effect of decreased SST and the related decrease of time-mean humidity difference between heights z = 10 m and z = 0 m. Within the midlatitude belts the intraseasonal variability of LHTFL is locally stronger (up to 50 W m−2) in regions of major SST fronts (like the Gulf Stream and Agulhas). Here it is forced by passing storms and is locally amplified by unstable air over warm SSTs. Although weaker in amplitude (but still significant), intraseasonal variability of LHTFL is observed in the tropical Indian and Pacific Oceans due to wind and humidity perturbations produced by the Madden–Julian oscillations. In this tropical region intraseasonal LHTFL and incoming solar radiation vary out of phase so that evaporation increases just below the convective clusters. Over much of the interior ocean where the surface heat flux dominates the ocean mixed layer heat budget, intraseasonal SST cools in response to anomalously strong upward intraseasonal LHTFL. This response varies geographically, in part because of geographic variations of mixed layer depth and the resulting variations in thermal inertia. In contrast, in the eastern tropical Pacific and Atlantic cold tongue regions intraseasonal SST and LHTFL are positively correlated. This surprising result occurs because in these equatorial upwelling areas SST is controlled by advection rather than by surface fluxes. Here LHTFL responds to rather than drives SST.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Climate Vol. 31, No. 17 ( 2018-09), p. 6967-6983
    In: Journal of Climate, American Meteorological Society, Vol. 31, No. 17 ( 2018-09), p. 6967-6983
    Abstract: This paper describes version 3 of the Simple Ocean Data Assimilation (SODA3) ocean reanalysis with enhancements to model resolution, observation, and forcing datasets, and the addition of active sea ice. SODA3 relies on the ocean component of the NOAA/Geophysical Fluid Dynamics Laboratory CM2.5 coupled model with nominal ¼° resolution. A scheme has also been implemented to reduce bias in the surface fluxes. A 37-yr-long ocean reanalysis, SODA3.4.2, created using this new SODA3 system is compared to the previous generation of SODA (SODA2.2.4) as well as to the Hadley Centre EN4.1.1 no-model statistical objective analysis. The comparison is carried out in the tropics, the midlatitudes, and the Arctic and includes examinations of the meridional overturning circulation in the Atlantic. The comparison shows that SODA3.4.2 has reduced systematic errors to a level comparable to those of the no-model statistical objective analysis in the upper ocean. The accuracy of variability has been improved particularly poleward of the tropics, with the greatest improvements seen in the Arctic, accompanying a substantial reduction in surface net heat and freshwater flux bias. These improvements justify increasing use of ocean reanalysis for climate studies including the higher latitudes.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Climate Vol. 21, No. 5 ( 2008-03-01), p. 1029-1047
    In: Journal of Climate, American Meteorological Society, Vol. 21, No. 5 ( 2008-03-01), p. 1029-1047
    Abstract: A new monthly uniformly gridded analysis of mixed layer properties based on the World Ocean Atlas 2005 global ocean dataset is used to examine interannual and longer changes in mixed layer properties during the 45-yr period 1960–2004. The analysis reveals substantial variability in the winter–spring depth of the mixed layer in the subtropics and midlatitudes. In the North Pacific an empirical orthogonal function analysis shows a pattern of mixed layer depth variability peaking in the central subtropics. This pattern occurs coincident with intensification of local surface winds and may be responsible for the SST changes associated with the Pacific decadal oscillation. Years with deep winter–spring mixed layers coincide with years in which winter–spring SST is low. In the North Atlantic a pattern of winter–spring mixed layer depth variability occurs that is not so obviously connected to local changes in winds or SST, suggesting that other processes such as advection are more important. Interestingly, at decadal periods the winter–spring mixed layers of both basins show trends, deepening by 10–40 m over the 45-yr period of this analysis. The long-term mixed layer deepening is even stronger (50–100 m) in the North Atlantic subpolar gyre. At tropical latitudes the boreal winter mixed layer varies in phase with the Southern Oscillation index, deepening in the eastern Pacific and shallowing in the western Pacific and eastern Indian Oceans during El Niños. In boreal summer the mixed layer in the Arabian Sea region of the western Indian Ocean varies in response to changes in the strength of the southwest monsoon.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2015
    In:  Journal of Geophysical Research: Oceans Vol. 120, No. 2 ( 2015-02), p. 1375-1387
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 120, No. 2 ( 2015-02), p. 1375-1387
    Abstract: Caribbean salinity varies interannually by 0.5 psu between salty and fresh events Anomalous SSS propagates west across the Caribbean at an average speed of 11 cm/s Anomalous Caribbean SSS is linked to interannual SSS in the Amazon/Orinoco plume
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2015
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...