GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ecology and Evolution, Wiley, Vol. 7, No. 1 ( 2017-01), p. 429-440
    Abstract: Loss of acoustic habitat due to anthropogenic noise is a key environmental stressor for vocal amphibian species, a taxonomic group that is experiencing global population declines. The Pacific chorus frog ( Pseudacris regilla ) is the most common vocal species of the Pacific Northwest and can occupy human‐dominated habitat types, including agricultural and urban wetlands. This species is exposed to anthropogenic noise, which can interfere with vocalizations during the breeding season. We hypothesized that Pacific chorus frogs would alter the spatial and temporal structure of their breeding vocalizations in response to road noise, a widespread anthropogenic stressor. We compared Pacific chorus frog call structure and ambient road noise levels along a gradient of road noise exposures in the Willamette Valley, Oregon, USA. We used both passive acoustic monitoring and directional recordings to determine source level (i.e., amplitude or volume), dominant frequency (i.e., pitch), call duration, and call rate of individual frogs and to quantify ambient road noise levels. Pacific chorus frogs were unable to change their vocalizations to compensate for road noise. A model of the active space and time (“spatiotemporal communication”) over which a Pacific chorus frog vocalization could be heard revealed that in high‐noise habitats, spatiotemporal communication was drastically reduced for an individual. This may have implications for the reproductive success of this species, which relies on specific call repertoires to portray relative fitness and attract mates. Using the acoustic call parameters defined by this study (frequency, source level, call rate, and call duration), we developed a simplified model of acoustic communication space–time for this species. This model can be used in combination with models that determine the insertion loss for various acoustic barriers to define the impact of anthropogenic noise on the radius of communication in threatened species. Additionally, this model can be applied to other vocal taxonomic groups provided the necessary acoustic parameters are determined, including the frequency parameters and perception thresholds. Reduction in acoustic habitat by anthropogenic noise may emerge as a compounding environmental stressor for an already sensitive taxonomic group.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2019
    In:  The Journal of the Acoustical Society of America Vol. 146, No. 4_Supplement ( 2019-10-01), p. 2805-2805
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 146, No. 4_Supplement ( 2019-10-01), p. 2805-2805
    Abstract: Passive acoustic monitoring is an effective tool for delineating population structure of blue whales (Balaenoptera musculus). Globally, there are at least nine regionally distinct blue whale songs, with at least two distinct groups within the North Pacific Ocean: the Northeast Pacific (NEP) and central or western Pacific populations. Investigation of the fine-scale frequency characteristics of the NEP blue whale song B unit was conducted from passive acoustic data collected between 2010 and 2013. Data were collected at two low latitude, putative breeding sites at Palmyra Atoll and the Hawaiian Islands and three higher latitude, feeding locations: off southern California, off Washington state, and in the Gulf of Alaska. Frequency measurements were extracted along the entire contour of B calls using a custom feature extraction tool in MATLAB. Data from these two different geographic and life-stage regions were compared to investigate possible fine-scale song separation within the larger region. At least two different variants of B unit were found and their geographic and temporal occurrence will be discussed.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2019
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...