GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 108, No. 10 ( 2023-04-13), p. 2859-2864
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2023
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 583-583
    Abstract: Background In high risk pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients, gain of function mutations and translocations affecting JAK2 have been described. These mutations and translocations result in aberrant kinase signaling and may therefore serve as an ideal target for precision medicines. Aim Evaluate the frequency and prognosis of JAK2 lesions among different subtypes of childhood BCP-ALL, and study the efficacy of the JAK1/2 inhibitors momelotinib and ruxolitinib. Methods This study comprised 77 BCR-ABL1-like cases and 76 B-other cases which were screened for JAK2 translocations using RT-PCR. Furthermore a representative pediatric cohort of 461 newly diagnosed BCP-ALL cases was screened for JAK2 mutations using targeted next-generation sequencing. Clinical analyses were performed in 341 BCP-ALL patients. Patient-derived-xenograft (PDX) cells were isolated from NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, which were injected with primary leukemic cells. Purity of PDX cells was enriched to over 90% and presence or absence of JAK2 lesions was validated. PDX and primary leukemic cells were exposed to a dilution series of momelotinib or ruxolitinib for four days. Where indicated, cells were pre-incubated with 25 ng/ml TSLP for 1 hour. In mono-culture assays, cytotoxicity was quantified using MTT and in co-culture assays flow cytometry was used. Leukemic cells were discriminated from mesenchymal stromal cells (MSCs) using CD19 and viability was assessed by Annexin V and Propidium Iodide. Western blotting was used to study protein expression levels. Results JAK2 translocations were detected in 6.5% of BCR-ABL1-like cases (3 PAX5-JAK2 cases, 1 TERF2-JAK2 case and 1 BCR-JAK2 case), but not in B-other cases. JAK2 mutations were identified in 3.5% of all BCP-ALL cases, which included JAK2 mutations in BCR-ABL1-like (7.6%), B-other (11.9%), and high hyperdiploid cases (1.6%), but not in MLL rearranged, BCR-ABL1-positive, ETV6-RUNX1-positive or TCF3-PBX1-positive cases. Cumulative incidence of relapse in patients harboring JAK2 lesions was as poor as in JAK2 wildtype BCR-ABL1-like and B-other patients. Efficacy of the JAK1/2 inhibitors momelotinib and ruxolitinib was examined in JAK2 lesion positive (primary and PDX) leukemic cells. Inhibitors were cytotoxic in both translocated and mutated cells, although efficacy in JAK2 mutated cells highly depended on CRLF2 activation by TSLP. CRLF2 activation resulted in downstream STAT5 activation and sensitization towards ruxolitinib compared to unstimulated cells (p 〈 0.05). Cells harboring JAK2 translocations signaled independently of CRLF2. Although momelotinib and ruxolitinib exposure blocked downstream STAT1/5 phosphorylation, both inhibitors also induced accumulation of phosphorylated JAK2Y1007. Consequently, release of the inhibitors resulted in a profound re-activation of JAK2 signaling, observed by upregulation of downstream STAT1/5 signaling. Furthermore, we observed microenvironment-induced resistance. Culturing leukemic cells in the presence of primary bone marrow MSCs induced resistance to ruxolitinib, compared to leukemic cells in single cultures (p 〈 0.05). A similar trend was observed for momelotinib. In addition, patients harboring JAK2 mutations displayed a heterogeneous leukemic cell population. Mouse xenograft models revealed different outgrowth patterns of leukemic cells, in which the JAK2 mutated clone persisted, decreased or even disappeared, resulting in outgrowth of JAK2 wildtype leukemic cells. Moreover, JAK2 mutations were not mutually exclusive for other pathway mutations (e.g. KRAS). Conclusion JAK2 translocations and mutations were detected in poor prognostic BCP-ALL cases. In ex vivo assays, the JAK1/2 inhibitors momelotinib and ruxolitinib were cytotoxic in JAK2 aberrant cells. Despite these promising findings, we identified certain limitations of these inhibitors. Inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon their release. Furthermore, our data suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and by microenvironment-induced resistance. Taken together, our data yield important directives for the clinical use of JAK inhibitors in pediatric BCP-ALL. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2823-2823
    Abstract: INTRODUCTION In 20-25% of the pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) patients, the driving cytogenetic aberration is unknown. It is important to identify more primary lesions in this remaining B-other group to provide better risk stratification and identify possible treatment options. In this study, we aimed to identify novel recurrent fusion genes in BCP-ALL through RNA sequencing. METHODS We used paired-end total RNA Illumina sequencing to detect fusion genes with STAR-fusion and FusionCatcher in a population-based ALL cohort (n=71). We used Affymetrix U133 Plus2 expression arrays in a larger population-based ALL cohort (n=661) and an infant ALL cohort (n=70) to compare gene expression levels. Fluorescent in situ hybridization (FISH) was performed using Cytocell NUTM1 break-apart probe set MPH4800. RESULTS We identified an in-frame SLC12A6-NUTM1 fusion transcript composed of exons 1-2 of SLC12A6 fused to exons 3 to 8 of NUTM1 by RNA sequencing. Both genes are located on 15q14 within 5.3 Kb distance on opposite strands, and the fusion could result from an inversion. The fusion transcript is predicted to encode almost the total NUTM1 protein including the acidic binding domain for the histone acetyltransferase EP300. The SLC12A6-NUTM1 fusion case showed high NUTM1 expression, while NUTM1 expression was absent in the remaining cases. Using gene expression profiling, we identified four additional pediatric and two non-KMT2A-rearranged infant BCP-ALL cases with high NUTM1 expression. In the population-based cohort reflecting all different cytogenetic subtypes, these cases were restricted to the B-other group without known sentinel cytogenetic abnormalities. FISH showed a NUTM1 break apart pattern in all four tested NUTM1-positive cases indicative of a balanced translocation. RNA sequencing confirmed an ACIN1-NUTM1 fusion in one of the infant cases. We conclude that NUTM1 is normally not expressed in leukemic lymphoblasts, and that its expression can be induced by a gene fusion. The karyotypes of the predicted NUTM1 fusion cases combined with RNA sequencing data suggest that different chromosomal rearrangements are involved, likely resulting in different NUTM1 fusion partners. In literature, BRD9-NUTM1, IKZF1-NUTM1, and CUX1-NUTM1 fusions were reported in pediatric B-other cases, and BRD9-NUTM1 and ACIN1-NUTM1 fusions were reported in non-KMT2A-rearranged infants. Our combined aberrant gene expression and FISH results indicate that NUTM1 fusions occur in 2.4% (5/210) of pediatric and in 28% (2/7) of infant BCP-ALL cases without a sentinel cytogenetic aberration. The recurrence of NUTM1 aberrations in BCP-ALL cases without a known driver and the resulting expression of NUTM1 suggests that this fusion could be a new oncogenic driver in leukemia. All seven patients with a NUTM1 fusion achieved continuous complete remission with a median follow-up time of 8.3 years (range 4.8-13.8 years), suggesting that NUTM1 fusions in BCP-ALL have a favorable prognosis. To get an insight in the underlying biology, we compared gene expression between NUTM1-positive and NUTM1-negative pediatric B-other cases. We identified 130 differentially expressed probe sets (FDR ≤0.01) with a peculiar enrichment of those located on chromosome band 10p12.31 (Bonferroni adjusted p=4.05E-04). The genes in cytoband 10p12.31, including BMI1, were variably upregulated in 6/7 NUTM1-positive cases and positively correlated to NUTM1 expression levels. The NUTM1 protein is capable of binding and hereby stimulating the histone acetyltransferase activity of the EP300 protein. The EP300 protein preferentially binds a risk allele of BMI1 associated with increased risk for BCP-ALL. The BMI1 protein has been shown to convert BCR-ABL1-positive progenitor cells into BCR-ABL1-positive BCP-ALL cells. Hence, we postulate that NUTM1 fusion proteins contribute to leukemogenesis by stimulating EP300, leading to upregulation of BMI1 and other 10p12.31 genes in BCP-ALL. CONCLUSION NUTM1 fusions are a rare but recurrent event in BCP-ALL that seems to have a good prognosis. The NUTM1 fusions result in expression of the normally silent NUTM1 gene and are associated with upregulation of a cluster of genes on 10p12.31 including the leukemogenic BMI1 gene. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Oncotarget, Impact Journals, LLC, Vol. 8, No. 52 ( 2017-10-27), p. 89923-89938
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 104, No. 10 ( 2019-10), p. e455-e459
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2019
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-03-15)
    Abstract: Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is associated with a high frequency of copy number alterations (CNAs) in IKZF1 , EBF1 , PAX5 , CDKN2A/B , RB1 , BTG1 , ETV6 , and/or the PAR1 region (henceforth: B-cell development genes). We aimed to gain insight in the association between CNAs in these genes, clinical outcome parameters, and cellular drug resistance. 71% of newly diagnosed pediatric BCP-ALL cases harbored one or more CNAs in these B-cell development genes. The distribution and clinical relevance of these CNAs was highly subtype-dependent. In the DCOG-ALL10 cohort, only loss of IKZF1 associated as single marker with unfavorable outcome parameters and cellular drug resistance. Prednisolone resistance was observed in IKZF1 -deleted primary high hyperdiploid cells (~1500-fold), while thiopurine resistance was detected in IKZF1 -deleted primary BCR-ABL1 -like and non- BCR-ABL1 -like B-other cells (~2.7-fold). The previously described risk stratification classifiers, i.e. IKZF1 plus and integrated cytogenetic and CNA classification, both predicted unfavorable outcome in the DCOG-ALL10 cohort, and associated with ex vivo drug cellular resistance to thiopurines, or L-asparaginase and thiopurines, respectively. This resistance could be attributed to overrepresentation of BCR-ABL1 -like cases in these risk groups. Taken together, our data indicate that the prognostic value of CNAs in B-cell development genes is linked to subtype-related drug responses.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Oncology Vol. 13 ( 2023-2-23)
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 13 ( 2023-2-23)
    Abstract: Intrachromosomal amplification of chromosome 21 (iAMP21) is a rare subtype of B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). It is unknown how iAMP21 contributes to leukaemia. The currently known commonly amplified region is 5.1 Mb. Methods We aimed to narrow down the common region of amplification by using high resolution techniques. Array comparative genomic hybridization (aCGH) was used to determine copy number aberrations, Affymetrix U133 Plus2 expression arrays were used to determine gene expression. Genome-wide expression correlations were evaluated using Globaltest. Results We narrowed down the common region of amplification by combining copy number data from 12 iAMP21 cases with 52 cases from literature. The combined common region of amplification was 1.57 Mb, located from 36.07 to 37.64 Mb (GRCh38). This region is located telomeric from, but not including, RUNX1 , which is the locus commonly used to diagnose iAMP21. This narrow region, which falls inside the Down Syndrome critical region, includes 13 genes of which the expression of eight genes was significantly upregulated compared with 143 non-iAMP21 B-other cases. Among these, transcriptional repressor RIPPLY3 (also known as DSCR6 ) was the highest overexpressed gene (fold change = 4.2, FDR & lt; 0.001) and most strongly correlated (R = 0.58) with iAMP21-related genome-wide expression changes. Discussion The more precise definition of the common region of amplification could be beneficial in the diagnosis of iAMP21 based on copy number analysis from DNA sequencing or arrays as well as stimulate functional research into the role of the included genes in iAMP21 biology.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3735-3735
    Abstract: Background Patients with pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with the BCR-ABL1 fusion gene form a small high-risk patient group with a poor prognosis. Approximately 15% of BCP-ALL are characterized by a gene expression signature similar to that of BCR-ABL1-positive disease and an unfavorable prognosis. This BCR-ABL1-like group shows a high frequency of B-cell development gene aberrations, especially IKZF1 deletions and tyrosine kinase-activating lesions (Den Boer et al. Lancet Oncol 2009; Mullighan et al. N Engl J Med 2009; Roberts et al. Cancer Cell 2012, N Engl J Med 2014; Van der Veer et al. Blood 2013). Aims To evaluate the clinical value of tyrosine kinase fusions in newly diagnosed children with B-cell precursor ALL, we studied their frequency, prognosis and drugability in a Dutch/German cohort. Methods This study comprised 204 children with BCP-ALL in three Dutch trials (DCOG ALL-8, 9, 10) and two German trials (COALL 06-97, 07-03) including 92 previously described BCR-ABL1-like cases identified by hierarchical clustering and 112 non-BCR-ABL1-like B-other cases. Molecular characterization included RT-PCR and FISH to detect fusions involving ABL1, PDGFRB, JAK2 and CSF1R, gene expression analysis, and copy number analysis. Results We identified 12 tyrosine kinase-activating fusion genes among 73 tested BCR-ABL1-like cases (16%) and none among 87 tested B-other cases. Eight fusions activated the ABL signaling pathway: 4 EBF1-PDGFRB, ZMIZ1-ABL1, RCSD1-ABL2, SSBP1-CSF1R, and one case with split ABL1 and an unknown fusion partner. Four fusions activated the JAK signaling pathway: 2 PAX5-JAK2, BCR-JAK2, and TERF2-JAK2. The gene fusions were confirmed by RT-PCR or targeted locus amplification. Gene expression of the involved tyrosine kinase was high in each of the fusion cases. IKZF1 deletions occurred more frequently in tyrosine kinase fusion cases compared with non-BCR-ABL1-like B-other cases (55% vs. 32%; p=0.2), and were enriched for rare, i.e. other than exon 4-7 or full deletion, variants (45% vs. 18%; p=0.05). In the remaining BCR-ABL1-like cases, the frequency of rare IKZF1 variants was similar to that in B-other (17%). Single deletion of exon 16 of EBF1 occurred in the EBF1-PDGFRB fusions and was rare among the remaining BCR-ABL1-like (0/77) and B-other cases (2/105). High CRLF2 expression co-occurred only in the BCR-JAK2 fusion case. The cumulative incidence of relapse (CIR) in the BCR-ABL1-like group with tyrosine kinase fusions (8-yr CIR 40% ± 18%) was comparable with that in the remaining BCR-ABL1-like group (8-yr CIR 36% ± 6%), and worse than in the B-other group (8-yr CIR 19% ± 4%; overall Gray p=0.04). Of the 12 tyrosine kinase fusion cases, four were late responders who only achieved remission after day 33 of induction therapy, and one was a non-responder resulting in early death. This non/late response rate was significantly higher in the tyrosine kinase fusion cases compared with non-BCR-ABL1 -like B-other (42% vs. 9%, p=0.008) and also higher compared with the remaining, fusion-negative BCR-ABL1-like cases (42% vs. 17%, p=0.06). Leukemic cells from three EBF1-PDGFRB patients were sensitive to 15 and 30 µM imatinib in ex vivo cultures, compared with lack of cytotoxic response in four EBF1-PDGFRB-negative samples, two of which even showed growth on imatinib. Combination of imatinib with 100 µg/ml prednisolone resulted in further growth inhibition in 2/3 EBF1-PDGFRB patients' ex vivo cultures. Conclusions Tyrosine kinase fusion genes were found in 16% of DCOG/COALL BCR-ABL1-like cases, representing ~3% of total BCP-ALL. BCR-ABL1-like cases with tyrosine kinase fusions were characterized by poor initial response to treatment, had an unfavorable clinical outcome compared with non-BCR-ABL1-like B-other ALL cases and a similar unfavorable outcome compared with tyrosine kinase fusion-negative BCR-ABL1-like cases. Imatinib worked additive to prednisolone in EBF1-PDGFRB patients' cells, indicating that this inhibitor may be clinically used in combination with at least prednisone. These results are in line with promising results of refractory EBF1-PDGFRB-positive and other ABL class fusion patients successfully treated with imatinib added to consolidation chemotherapy (Lengline et al. Haematologica 2013; Weston et al. J Clin Oncol 2013; Roberts et al. N Engl J Med 2014). Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: EJC Paediatric Oncology, Elsevier BV, Vol. 3 ( 2024-06), p. 100140-
    Type of Medium: Online Resource
    ISSN: 2772-610X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Translational Oncology Vol. 13, No. 10 ( 2020-10), p. 100817-
    In: Translational Oncology, Elsevier BV, Vol. 13, No. 10 ( 2020-10), p. 100817-
    Type of Medium: Online Resource
    ISSN: 1936-5233
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2443840-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...