GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    The American Association of Immunologists ; 2019
    In:  ImmunoHorizons Vol. 3, No. 7 ( 2019-07-01), p. 294-305
    In: ImmunoHorizons, The American Association of Immunologists, Vol. 3, No. 7 ( 2019-07-01), p. 294-305
    Kurzfassung: Bromodomain and extraterminal domain (BET) proteins help direct the differentiation of helper T cell subsets, but their role in activated T cell function has not been described in detail. In this study, we investigate various consequences of epigenetic perturbation in human T lymphocytes using MK-8628, a potent and highly selective inhibitor of BET proteins. MK-8628 reduces the expression of canonical transcripts directing the proliferation, activation, and effector function of T lymphocytes. Treatment with MK-8628 abolishes the expression of key cyclins required for cell cycle progression and induces G1 cell cycle arrest in TCR-activated lymphocytes. This antiproliferative phenotype partially results from T lymphocyte apoptosis, which is exacerbated by MK-8628. In naive and memory T cell subsets, MK-8628 antagonizes T cell activation and suppresses polyfunctional cytokine production. Collectively, our results describe potent immunosuppressive effects of BET inhibition on human T cell biology. These results have important implications for immune modulatory targeting of BET proteins in the settings of T cell–driven autoimmune inflammation.
    Materialart: Online-Ressource
    ISSN: 2573-7732
    Sprache: Englisch
    Verlag: The American Association of Immunologists
    Publikationsdatum: 2019
    ZDB Id: 2882729-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: The Lancet, Elsevier BV, Vol. 397, No. 10285 ( 2021-05), p. 1637-1645
    Materialart: Online-Ressource
    ISSN: 0140-6736
    RVK:
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2021
    ZDB Id: 2067452-1
    ZDB Id: 3306-6
    ZDB Id: 1476593-7
    SSG: 5,21
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: The Lancet, Elsevier BV, Vol. 399, No. 10320 ( 2022-01), p. 143-151
    Materialart: Online-Ressource
    ISSN: 0140-6736
    RVK:
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2022
    ZDB Id: 2067452-1
    ZDB Id: 3306-6
    ZDB Id: 1476593-7
    SSG: 5,21
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Cell Reports, Elsevier BV, Vol. 26, No. 2 ( 2019-01), p. 469-482.e5
    Materialart: Online-Ressource
    ISSN: 2211-1247
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2019
    ZDB Id: 2649101-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2005
    In:  Nature Vol. 437, No. 7061 ( 2005-10), p. 1043-1047
    In: Nature, Springer Science and Business Media LLC, Vol. 437, No. 7061 ( 2005-10), p. 1043-1047
    Materialart: Online-Ressource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2005
    ZDB Id: 120714-3
    ZDB Id: 1413423-8
    SSG: 11
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 2530-2530
    Kurzfassung: Aurora Kinases are a family of mitotic regulators. Aurora Kinase A (AURKA) plays a crucial role in centrosome separation and spindle assembly and is required for mitosis and bipolar mitotic spindle formation. Aurora Kinase B (AURKB), a member of the chromosomal passenger complex, is required for chromosome segregation, spindle assembly checkpoint and cytokinesis. Both AURKA and AURKB are significantly overexpressed in MM cells, which has prompted the investigation of aurora kinase inhibitors as a therapeutic strategy in MM. Here, we investigated the preclinical activity of a small molecule multitargeted inhibitor, AT9283, with potent in vitro kinase activity against AURKA and AURKB kinases (3 nM), JAK2 and 3 (at 1.2 and 1.1 nM) and Abl T315I (at 4 nM). Growth inhibitory effects of AT9283 on MM cell lines and patient derived cells was observed with IC50 values of 0.25µM −0.5 µM at 48 hours using a [3H]thymidine incorporation assay. Cell cycle analysis following AT9283 treatment resulted in increased G2/M phase and polyploidy consistent with failed cytokinesis (associated with AURKB inhibition) confirmed by immunofluorescence assay. This was followed by induction of apoptosis assessed by Annexin V+PI+ staining peaking at 48 − 72 hours with associated −8-9 cleavage. Decreased levels of phosphorylated histone H3 at serine-10, a direct downstream substrate of AURKB, confirmed the role of AURKB inhibition by AT9283. Importantly, besides aurora kinase inhibition, we observed that AT9283 also inhibited STAT3 tyrosine phosphorylation in MM cells within 30 minutes of treatment. The effect of AT9283 on STAT3 inhibition was further investigated by using U3A cells stably expressing a luciferase reporter gene under the control of a STAT-dependent promoter. AT9283 inhibited STAT3-dependent luciferase activity with an EC50 of approximately 0.125 μM. Since MM cell lines with constitutive STAT3 tyrosine phosphorylation were more sensitive to AT9283, we investigated whether AT9283-induced effects on the JAK/STAT pathway correlated with Aurora inhibition. Genetic depletion by RNA interference showed that STAT3 knockdown in U266 cells did not affect the expression levels of AURKA and AURKB. In contrast, in cells with knocked-down AURK A and B, we observed a downregulation in the expression level of STAT3, due to either an off-target effect or the possibility that STAT3 is downstream of Aurora Kinases. Ongoing studies are aimed at understanding whether AT9283-induced effects on the JAK/STAT pathway enhance the efficacy of aurora kinase inhibition in the context of MM. Finally, in vivo data using a xenograft mouse model of human MM show that mice treated with AT9283 demonstrated slower tumor growth compared to the control group without adverse effects. In conclusion, these results show significant anti-MM activity of AT9283, and provide the rationale for its clinical evaluation in MM. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 2530.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2010
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 2603-2603
    Kurzfassung: CRISPR-based functional genomic screening is a powerful approach for identifying novel classes of synthetic lethal drug targets. Here, we define the deubiquitinase USP1 as a synthetic lethal target in cancers with underlying DNA repair vulnerabilities. A highly potent and selective small molecule USP1 inhibitor conferred a viability defect in BRCA1-mutant, but not WT cell lines by activating replication stress. Genome-wide CRISPR screening uncovered RAD18 and UBE2K, which promote PCNA mono- and poly-ubiquitination respectively, as key mediators of USP1-BRCA1 dependency. Increased cellular mono- and poly-ubiquitination reduced PCNA protein levels, and restoration of PCNA protein expression rescued USP1 inhibitor sensitivity. USP1 dependency is associated with upregulated RAD18 and UBE2K expression, suggesting that elevated PCNA ubiquitination in the context of BRCA1 deficiency mediates USP1 synthetic lethality. Interestingly, USP1, but not PARP1 inhibition, elicited a viability defect in a subset of BRCA1/2 WT lung cancer cell lines, indicative of novel synthetic lethal interactions unique to USP1. Moreover, dual inhibition of PARP1 and USP1 are strongly synergistic in PARP1 inhibitor-responsive cell line models. Strong in vivo anti-tumor activity across multiple tumor models was demonstrated with USP1 inhibition alone and in combination with the PARP1 inhibitor olaparib. Our studies suggest that USP1 and PARP1 inhibitors target BRCA1-mutant cancer though distinct yet synergistic mechanisms. As such, USP1 inhibitors may provide novel treatment strategies for PARP1 inhibitor-resistant and -naïve BRCA1-mutant cancer. Citation Format: Justin Engel, Madhavi Bandi, Antione Simoneau, Katherine Lazarides, Deepali Gotur, Truc Pham, Shangtao Liu, Samuel Meier, Ashley Choi, Hongxiang Zhang, Binzhang Shen, Fang Li, Douglas Whittington, Shanzhong Gong, Xuewen Pan, Yi Yu, Lina Gu, Scott Throner, John Maxwell, Yingnan Chen, Alan Huang, Jannik Andersen, Tianshu Feng. USP1 inhibitor synthetic lethality in BRCA1-mutant cancer is driven by PCNA ubiquitination [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2603.
    Materialart: Online-Ressource
    ISSN: 1538-7445
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2022
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 14, No. 1_Supplement ( 2016-01-01), p. A65-A65
    Kurzfassung: Tumor cells normally depend on both glycolysis and oxidative phosphorylation (OXPHOS) to provide the energy and macromolecule building blocks for rapid growth. Metabolic vulnerabilities caused by inactivation of glycolysis render tumor cells highly dependent on OXPHOS, and represent a therapeutic opportunity. Through an extensive medicinal chemistry campaign, we have identified IACS-10759 as a potent inhibitor of complex I of OXPHOS. IACS-10759 effectively inhibits ATP production and oxygen consumption in isolated mitochondria, and inhibits the conversion of NADH to NAD+ in immunoprecipitated complex I in low nM range. The exact subunit that IACS-10759 binds to is under investigation. Importantly, IACS-10759 is orally bioavailable with excellent physicochemical properties in preclinical species, and shows significant efficacy in multiple tumor indications both in vitro and in vivo. Specifically, in a glycolysis-deficient xenograft model, IACS-10759 causes robust tumor regression, but has no effect in the same model when glycolysis is restored. In addition, in AML where tumor cells have been shown to be highly OXPHOS-dependent, IACS-10759 robustly suppresses cell growth and induces apoptosis in both primary AML samples and cell lines in vitro, but not in normal patient-derived bone marrow cells. Significantly, IACS-10759 extends median survival by over 50 days in an AML orthotopic xenograft model. Furthermore, IACS-10759 also shows selective efficacy in other cell line panels including pancreatic cancer, non-small cell lung cancer and colorectal cancer, and has synergism with glycolysis inhibitors. In light of these results, we are currently performing IND enabling studies for IACS-10759, with first-in-human studies targeted for fourth quarter of 2015. Citation Format: Marina Protopopova, Madhavi Bandi, Yuting Sun, Jennifer Bardenhagen, Christopher Bristow, Christopher Carroll, Edward Chang, Ningping Feng, Jason Gay, Mary Geck Do, Jennifer Greer, Marina Konopleva, Polina Matre, Zhijun Kang, Gang Liu, Florian Muller, Timothy Lofton, Timothy McAfoos, Melinda Smith, Jay Theroff, Jing Han, Yuanqing Wu, Lynda Chin, Giulio Draetta, Philip Jones, Carlo Toniatti, M. Emilia Di Francesco, Joseph R. Marszalek. IACS-10759: A novel OXPHOS inhibitor that selectively kills tumors with metabolic vulnerabilities. [abstract]. In: Proceedings of the AACR Special Conference: Metabolism and Cancer; Jun 7-10, 2015; Bellevue, WA. Philadelphia (PA): AACR; Mol Cancer Res 2016;14(1_Suppl):Abstract nr A65.
    Materialart: Online-Ressource
    ISSN: 1541-7786 , 1557-3125
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2016
    ZDB Id: 2097884-4
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 21 ( 2022-11-02), p. 4044-4057
    Kurzfassung: Synthetic lethality is a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone, which can be co-opted for cancer therapeutics. Pairs of paralog genes are among the most straightforward potential synthetic–lethal interactions by virtue of their redundant functions. Here, we demonstrate a paralog-based synthetic lethality by targeting vaccinia-related kinase 1 (VRK1) in glioblastoma (GBM) deficient of VRK2, which is silenced by promoter methylation in approximately two thirds of GBM. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells resulted in decreased activity of the downstream substrate barrier to autointegration factor (BAF), a regulator of post-mitotic nuclear envelope formation. Reduced BAF activity following VRK1 knockdown caused nuclear lobulation, blebbing, and micronucleation, which subsequently resulted in G2–M arrest and DNA damage. The VRK1–VRK2 synthetic–lethal interaction was dependent on VRK1 kinase activity and was rescued by ectopic expression of VRK2. In VRK2-methylated GBM cell line–derived xenograft and patient-derived xenograft models, knockdown of VRK1 led to robust tumor growth inhibition. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM. Significance: A paralog synthetic–lethal interaction between VRK1 and VRK2 sensitizes VRK2-methylated glioblastoma to perturbation of VRK1 kinase activity, supporting VRK1 as a drug discovery target in this disease.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2022
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 949-949
    Kurzfassung: Inhibition of mitochondria complex I in tumors that are metabolically dependent on oxidative phosphorylation (OXPHOS) for their survival offers unique synthetic lethal opportunities. Examples of dependent contexts are AML and DLBCL, where OXPHOS is highly active and subpopulations of glioblastoma and neuroblastoma that possess genetic alterations which make them glycolysis deficient. In addition, several lines of evidence indicate that after treatment with chemo or targeted therapy, residual tumor cells become reliant on OXPHOS for their continued survival. In each of these cellular states, excessive dependence on OXPHOS renders tumor cells vulnerable to therapeutic targeting strategies that exploit this addiction. We have generated a series of novel, highly potent complex I inhibitors, which in vitro inhibit complex I with IC50 values & lt; 10 nM. When tested in cultured cell systems (cell lines and spheroids) these compounds inhibit oxygen consumption, eliminate hypoxia, and strongly inhibit the proliferation cells grown in galactose medium with EC50 values between 1-10 nM. Lead compounds specifically induce apoptosis with EC50 values between 1-10 nM in OXPHOS dependent cancer models such as AML and DLBCL cell lines and in glycolysis deficient cancer cell lines. Of note, apoptosis is induced in primary AML cells but not in normal patient-derived CD34+ cells. These compounds are orally bioavailable with excellent pharmacokinetics properties in preclinical species making them appropriate tools for proof-of-concept studies in vivo. In agreement with data in cell culture, we have shown that daily oral treatment with as low as 5 -10 mg/kg of our OXPHOS inhibitors is well tolerated and induce strong regression of NB-1 (glycolysis-deficient cells) subcutaneous and intracranial xenografts. We have also demonstrated that sustained pharmacological inhibition of OXPHOS induce regression of DLBCL subcutaneous models and dramatically increase mice survival in an OCI-AML3 orthotopic xenograft model. In addition to synthetic lethality in monotherapy, we are exploring whether OXPHOS inhibition can overcome resistance to radiotherapy, chemotherapy and specific targeted therapies. Taken together, these data strongly support the notion that inhibiting OXPHOS in hypersensitive populations could be a novel, innovative therapeutic approach and justifies evaluation of OXPHOS inhibitors in a clinical setting. Citation Format: Joseph R. Marszalek, Madhavi Bandi, Jennifer Bardenhagen, Christopher Bristow, Christopher Carroll, Edward Chang, Ninping Feng, Barbara Czako, Jason Gay, Mary Geck Do, Jennifer Greer, Ryan M. Johnson, Marina Konopleva, Zhijun Kang, Gang Liu, Timothy Lofton, Timothy McAfoos, Marina Protopopova, Alessia Petrocchi, Florian Muller, Jay Theroff, Yuanqing Wu, Lynda Chin, Giulio Draetta, Philip Jones, Carlo Toniatti, Emilia Di Francesco. Identification of OXPHOS inhibitors which selectively kill tumors with specific metabolic vulnerabilities. [abstract]. In: Proceedings of the 105th Ann ual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 949. doi:10.1158/1538-7445.AM2014-949
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2014
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...