GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2016
    In:  Blood Vol. 128, No. 22 ( 2016-12-02), p. 3734-3734
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 3734-3734
    Abstract: The immune response to platelet factor 4 (PF4)/heparin complexes is a frequent iatrogenic complication of heparin therapy associated with development of heparin-induced thrombocytopenia (HIT). Our recent studies indicate that PF4/heparin complexes potently activate complement (C') in healthy donors and patients receiving heparin therapy. In these studies, we also show that C' mediates selective antigen-binding to circulating B cells via the complement receptor 2, CD21 (Khandelwal, Blood 2016). In the course of performing these studies, we developed a simple enzyme-linked immunosorbent assay (ELISA)-based technique for measuring C3 subunit generation by protein/heparin complexes in plasma. For this assay, monoclonal antibodies to PF4/heparin (KKO; Arepally, Blood 2000) or protamine (PRT)/heparin complexes (ADA, Lee unpublished data) are incubated overnight on a microtiter plate, followed by washing and blocking with 1% bovine serum albumin (BSA) in phosphate buffered saline (PBS) for 2 hours. To examine C' activation, plasma is incubated with buffer or antigen (PF4, 25µg/mL ± heparin or PRT 31 µg/mL ± 4U/ml heparin) for 60 minutes at 37°C followed by addition of 10mM EDTA to inhibit further C'activation. Plasma containing antigen and activated C' fragments is next added to the antibody coated plate for 1 hour at 40C followed by three washes. C' activation is detected using a biotinylated antibody to C3c (Quidel Corporation, San Diego, CA) followed by streptavidin-HRP (BD Bio Sciences San Jose, CA). Using this assay, we show that plasma incubated with PF4/heparin complexes, but not PF4 alone or heparin alone trigger C' activation as measured by C3 binding (1:50 plasma dilution shown; Figure 1A). Similarly, using ADA, a recently developed monoclonal antibody to PRT/heparin complexes, we show that PRT/heparin complexes, but not PRT alone or heparin alone, robustly activate C' (1:10 plasma dilution shown; Figure 1B). To show that C3 generation is dependent on ultra-large complex (ULC) formation, we performed experiments using a fixed dose of UFH (0. 5 U/mL) and varying doses of PF4 (5-200 µg/mL) or fixed dose of PF4 (25 µg/mL) and varying doses of UFH (0.0005-5.0 U/mL), LMWH (0.01-100 µg/mL) and fondaparinux (0.05-100µg/mL). Consistent with published observations (Khandelwal, Blood 2016), we note that changes in PF4 concentration (Figure 2A) or UFH/LMWH/fondaparinux concentration (Figure 2B) results in a bell-shaped curve of C'activation that mirrors ULC formation. Because the immune response to PF4/heparin is highly variable among heparin-exposed patients, we examined inter-individual variation in C' activation by PF4/heparin complexes. For these studies, we analyzed C' activation using a fixed dose of PF4/heparin (25 µg/mL PF4 and 0.25U/mL heparin) in freshly collected plasma from 10 healthy donors . As shown in Figure 3, we noted that C' activation is highly variable among donors, with some donors showing significant C' activation (donors A,B,C, E ,G,I), while others show minimal C3 generation (donors D,F,H,J) in response to same dose of PF4/heparin complexes. Together, these studies show that the ELISA-based C3 generation assay is a simple, robust assay for detecting C' activation by PF4/heparin or PRT/heparin complexes and can be useful in studying mechanisms of C' activation and biologic effects of commercial heparins. Disclosures Arepally: Biokit: Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Thrombosis and Haemostasis, Georg Thieme Verlag KG, Vol. 107, No. 04 ( 2012), p. 717-725
    Abstract: Recent studies have shown that ultra-large complexes (ULCs) of platelet factor 4 (PF4) and heparin (H) play an essential role in the pathogenesis of heparin-induced thrombocytopenia (HIT), an immune-mediated disorder caused by PF4/H antibodies. Because antigenic PF4/H ULCs assemble through non-specific electrostatic interactions, we reasoned that disruption of charge-based interactions can modulate the immune response to antigen. We tested a minimally anticoagulant compound (2-O, 3-O desulfated heparin, ODSH) with preserved charge to disrupt PF4/H complex formation and immunogenicity. We show that ODSH disrupts complexes when added to pre-formed PF4/H ULCs and prevents ULC formation when incubated simultaneously with PF4 and UFH. In other studies, we show that excess ODSH reduces HIT antibody (Ab) binding in immunoassays and that PF4/ODSH complexes do not cross-react with HIT Abs. When ODSH and unfractionated heparin (UFH) are mixed at equimolar concentrations, we show that there is a negligible effect on amount of protamine required for heparin neutralisation and reduced immunogenicity of PF4/UFH in the presence of ODSH. Taken together, these studies suggest that ODSH can be used concurrently with UFH to disrupt PF4/H charge interactions and provides a novel strategy to reduce antibody mediated complications in HIT. Presented in part at the 52nd American Society of Hematology Annual Meeting and Exposition, December 6th, 2010, Orlando, Florida, USA.
    Type of Medium: Online Resource
    ISSN: 0340-6245 , 2567-689X
    Language: English
    Publisher: Georg Thieme Verlag KG
    Publication Date: 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 55-55
    Abstract: Heparin-induced thrombocytopenia (HIT) is caused by antibodies that recognize complexes between high molecular weight heparin and Platelet Factor 4 (PF4). Current therapy with direct thrombin inhibitors is not effective in all cases, likely because it acts downstream of antibody-induced platelet activation. More directed therapies to the underlying pathology in HIT may be more effective. Heparin and PF4 only bind HIT antibodies over a narrow molar ratio of reactants at which ultralarge soluble complexes are formed. We asked whether similar complexes form between PF4 and endogenous platelet glycosaminoglycans (GAG) and their pathogenic role in experimental HIT. Platelet surface GAG:PF4 complexes are indeed antigenic over a narrow molar range of reactants. Heparin is not required for either HIT-IgG or a HIT-like monoclonal antibody KKO to bind to PF4 on human or mouse platelet surfaces in vitro, but enhances antigenicity when very high levels of surface PF4 are present. Antigenicity is maximal at a PF4 concentration of 50 μg/mL (well within the range that can be achieved within a thrombus) and ~25 μg/mL heparin (~0.5 U/mL, which is within the therapeutic range) optimally enhances antigenicity when surface PF4 levels were increased 4-fold. Using transgenic mice lines each with platelets expressing a different level of hPF4, ranging from 0.5 – 6 X’s human platelet levels and all expressing FcRγIIA, were given KKO. The different lines developed thrombocytopenia proportional in severity and duration to hPF4 expression. A standard subcutaneous (sq) heparininzing dose (20 U/kg, sq daily) prolonged the duration of severe thrombocytopenia in high hPF4 expressing mice. We reasoned that altering the ratio of PF4 to GAG in either direction would alter antigenicity and could block the development of thrombocytopenia. In accordance with this concept, both high concentrations of anionic heparin (100 U/kg, sq daily) and cationic protamine sulfate (2 mg/kg, sq daily) decreased KKO binding in vitro and prevented KKO-induced thrombocytopenia in vivo as a demonstration of successful therapeutic intervention. These studies affirm a central role of surface GAG:PF4 complexes in the development of HIT, suggest ways to identify patients at high risk to develop HIT even prior to heparin exposure, and offers a new and rationale therapeutic paradigm based on disrupting surface antigen formation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 138, No. 21 ( 2021-11-25), p. 2106-2116
    Abstract: Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by ultra-large immune complexes (ULICs) containing immunoglobulin G (IgG) antibodies to a multivalent antigen composed of platelet factor 4 and heparin. The limitations of current antithrombotic therapy in HIT supports the need to identify additional pathways that may be targets for therapy. Activation of FcγRIIA by HIT ULICs initiates diverse procoagulant cellular effector functions. HIT ULICs are also known to activate complement, but the contribution of this pathway to the pathogenesis of HIT has not been studied in detail. We observed that HIT ULICs physically interact with C1q in buffer and plasma, activate complement via the classical pathway, promote codeposition of IgG and C3 complement fragments (C3c) on neutrophil and monocyte cell surfaces. Complement activation by ULICs, in turn, facilitates FcγR-independent monocyte tissue factor expression, enhances IgG binding to the cell surface FcγRs, and promotes platelet adhesion to injured endothelium. Inhibition of the proximal, but not terminal, steps in the complement pathway abrogates monocyte tissue factor expression by HIT ULICs. Together, these studies suggest a major role for complement activation in regulating Fc-dependent effector functions of HIT ULICs, identify potential non-anticoagulant targets for therapy, and provide insights into the broader roles of complement in immune complex–mediated thrombotic disorders.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 11-12
    Abstract: Heparin induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by ultra-large immune complexes (ULICs) containing IgG antibodies bound to multivalent complexes of platelet factor 4 (PF4) and heparin (H). HIT ULICs activate cellular FcγIIA receptors that initiate diverse cellular effector functions including neutrophil degranulation and monocyte expression of tissue factor (TF). Previous studies have shown that HIT ULICs also potently activate complement through the classical pathway (Cines et al., 1980). Whether complement activation contributes to FcγRIIA-dependent prothrombotic pathways has not been addressed in detail. In studies that follow, we describe: 1) robust complement activation by HIT ULICs in plasma and whole blood (WB), 2) cell-surface deposition of complement and IgG triggered by HIT ULICs, 3) complement-dependent neutrophil degranulation and monocyte TF expression, 4) efficacy of proximal, but not terminal, pathway inhibition in regulating monocyte TF expression, and 5) deposition of complement in thrombi formed in "HIT mice" that generate ULICs containing KKO, a HIT-like monoclonal antibody (Arepally et al., 2000). Consistent with prior studies showing involvement of the classical pathway in HIT (Cines et al., 1980), we observed that binding of C1q induced marked enlargement of HIT ULICs in buffer assessed by dynamic light scattering as well as in plasma using confocal microscopy (data not shown). To assess complement activation by HIT ULICs, we incubated WB and plasma with PF4 (25 µg/mL) ± heparin (1 U/mL) in the presence of KKO (or isotype, "ISO"; 50 µg/mL) or HIT IgG (or control IgG, "CON"; 500 µg/mL) and measured C3c with a capture immunoassay as previously described (Khandelwal et al., 2018). KKO (Figure 1A) or HIT ULICs (n=3; HIT1-3, Figure 1B), showed robust generation of C3c in the presence of PF4/heparin, but not antigens alone or with control IgG (ISO/CON). Complement activation by HIT ULICs leads to downstream generation of C5a and formation of sC5b-9 (data not shown). Pre-incubation of plasma or WB with a variety of classical pathway inhibitors, including a C1r inhibitor derived from Borrelia burgdorferi (BBK 32), C1 esterase inhibitor (Berinert, CSL Behring) and anti-C1q antibody (α-C1q Ab; Annexon Biosciences) inhibited C3c generation by KKO ULICs (p & lt;0.001), whereas inhibitors of the alternative pathway (anti-properdin antibody) or C5 inhibitor (α-C5 Ab; Eculizumab, Alexion Pharmaceuticals) did not (data not shown). Incubation of WB with KKO or HIT ULICs, but not ISO or CON IgG, markedly increased deposition of C3 and IgG on neutrophils, monocytes and B cells (data not shown) and lead to cell activation assessed by neutrophil degranulation (MMP9 release) and monocyte TF expression (data not shown). To examine the contribution of complement activation in monocyte TF expression, WB was pre-incubated with α-C1q, α-C5 or IV.3 (a monoclonal antibody to FcγRIIA) or isotype controls prior to addition of HIT ULICs. As shown in Figure 2, the classical pathway inhibitor, α-C1q Ab markedly diminished TF expression (about 70% reduction; p & lt;0.001 vPF4/H/ KKO), as did IV.3 (about 85% reduction; p & lt;0.001 vPF4/H/ KKO) but not α-C5 Ab or ISO antibodies, demonstrating: 1) FcγRIIA independent mechanism of monocyte TF expression and 2) a requirement for proximal rather than terminal complement pathway components in the induction of monocyte TF. We next asked if complement activation facilitates binding of ULICs and promotes subsequent ULIC engagement of FcγRIIA. To examine complement dependent binding of HIT ULICs, we incubated WB with α-C1q Ab prior to addition of KKO ULICs and measured ULIC binding to monocytes and TF expression. As shown in Figure 3, classical pathway inhibition markedly reduced cell-surface IgG (Figure 3A) and monocyte TF expression (Figure 3B). The effects of complement inhibition could not be overcome with increasing amounts of KKO IgG (2-4 fold excess). We observed significant co-localization of complement with KKO ULICs in a cremaster-laser injury model in "HIT mice" and in in situ thrombi formed in uninjured vessels (data not shown). Together, these studies demonstrate an independent role for complement activation in regulating the binding and procoagulant effects of HIT ULICs and identify new non-anticoagulant therapeutic targets that could improve clinical outcomes in this otherwise potentially devastating thrombotic disorder. Disclosures Arepally: Novartis: Consultancy; Alexion: Other; Annexon Biosciences: Consultancy, Other; Veralox Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Biokit: Consultancy, Patents & Royalties; Apotex: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 3823-3823
    Abstract: Despite notable disadvantages, unfractionated heparin (UFH) remains the standard anticoagulant for clinical procedures requiring potent and reversible anticoagulation such as cardiopulmonary bypass (CPB). Limitations of UFH that contribute to patient morbidity in these settings include the fact that it permits thrombin generation and can cause the antibody-mediated syndrome Heparin-induced Thrombocytopenia (HIT), in addition to independent toxicities associated with its reversal agent, protamine. 11F7t is an anticoagulant RNA aptamer which inhibits FXa but unfortunately achieves less intense anticoagulation than UFH. The latter is also true for clinical FXa catalytic site inhibitors such as rivaroxaban, apixaban, or edoxoban. However, 11F7t does not inhibit FXa's catalytic activity but instead binds a FXa exosite to impede FVa binding and thus prothrombinase assembly. Owing to these different mechanisms, we previously reported that 11F7t can potently synergize with a FXa catalytic site inhibitor to prevent clot formation for 〉 180 minutes (min) in whole blood thromboelastography (TEG) assays, thereby replicating the effect of UFH (5U/mL). Here we sought to determine whether combinations of 11F7t plus a FXa catalytic site inhibitor can also prevent clotting as effectively as UFH in flowing blood within an ex vivo CPB membrane oxygenator circuit. In addition, we investigated whether efficient and simultaneous reversal of both anticoagulants could also be achieved post-circulation using desGla-Xa-S195A, which is a Gla-domainless catalytically inactive recombinant FXa mutant analogous to Andexanet Alfa, a therapeutic currently in clinical trials as an antidote for several FXa inhibitors. We also quantified levels of thrombin generation during circulation based on Prothrombin fragment 1+2 (F1+2) measurement. Finally, we investigated whether purified IgG obtained from three HIT patients could induce platelet aggregation in the presence of 11F7t, as occurs with UFH. Human whole blood anticoagulated with either (A) UFH (5U/ml), or a combination of 11F7t (2µM) plus either (B) rivaroxaban (2µM), (C) apixaban (2µM), or (D) edoxaban (2µM) was circulated within a miniature oxygenator circuit at 33°C for 120 min at a 50 mL/min flow rate. While anticoagulation with either 11F7t or each of the FXa catalytic site inhibitors alone failed to maintain circuit blood fluidity, strategies (A) through (D) each prevented visible clot formation for 120 min and achieved therapeutic anticoagulation levels ( 〉 400 sec) as measured by the Activated Clotting Time (ACT). In addition, post-circulation scanning electron micrographs of the oxygenator membranes were similar for all four strategies and revealed minimal fibrinous and cellular debris. Successful normalization of the ACT was achieved upon administration of desGla-Xa-S195A (2µM) for strategies (B) through (D), similarly to that observed for UFH reversal by protamine. In addition, elevation of F1+2 levels post-circulation was significantly higher with UFH compared to each of the 11F7t plus FXa catalytic site inhibitor strategies (B-D). Finally, the HIT patient-derived purified IgG only induced platelet aggregation in the presence of UFH but not aptamer 11F7t (strategies B-D). We have shown that the anticoagulant synergy achieved by combining aptamer 11F7t with a FXa catalytic site inhibitor can prevent blood clotting within an ex vivo oxygenator circuit as effectively as UFH, and may be additionally advantageous in limiting thrombin generation. Moreover, administration of desGla-Xa-S195A or a similar inactive FXa decoy like Andexanet Alfa may enable simultaneous reversal of both anticoagulants. This dual anticoagulant strategy may provide a useful alternative to UFH in clinical settings like CPB that necessitate both potent and reversible anticoagulation, and may be especially valuable for patients with a prior history of HIT. Disclosures Arepally: Biokit: Patents & Royalties. Camire:Pfizer: Consultancy, Patents & Royalties, Research Funding; Novo Nordisk: Research Funding; Bayer: Consultancy; sparK: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Thrombosis and Haemostasis, Elsevier BV, Vol. 17, No. 11 ( 2019-11), p. 1956-1965
    Type of Medium: Online Resource
    ISSN: 1538-7836
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2099291-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2019
    In:  Blood Advances Vol. 3, No. 19 ( 2019-10-08), p. 2778-2789
    In: Blood Advances, American Society of Hematology, Vol. 3, No. 19 ( 2019-10-08), p. 2778-2789
    Abstract: In a whole blood assay, ICs cause neutrophil activation and degranulation. Individuals have a fixed susceptibility to neutrophil activation by ICs.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2013
    In:  Hematology/Oncology Clinics of North America Vol. 27, No. 3 ( 2013-6), p. 541-563
    In: Hematology/Oncology Clinics of North America, Elsevier BV, Vol. 27, No. 3 ( 2013-6), p. 541-563
    Type of Medium: Online Resource
    ISSN: 0889-8588
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 93115-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2021-09-15)
    Abstract: Sensitized kidney transplant recipients experience high rates of antibody-mediated rejection due to the presence of donor-specific antibodies and immunologic memory. Here we show that transient peri-transplant treatment with the central complement component C3 inhibitor Cp40 significantly prolongs median allograft survival in a sensitized nonhuman primate model. Despite donor-specific antibody levels remaining high, fifty percent of Cp40-treated primates maintain normal kidney function beyond the last day of treatment. Interestingly, presence of antibodies of the IgM class associates with reduced median graft survival (8 vs. 40 days; p  = 0.02). Cp40 does not alter lymphocyte depletion by rhesus-specific anti-thymocyte globulin, but inhibits lymphocyte activation and proliferation, resulting in reduced antibody-mediated injury and complement deposition. In summary, Cp40 prevents acute antibody-mediated rejection and prolongs graft survival in primates, and inhibits T and B cell activation and proliferation, suggesting an immunomodulatory effect beyond its direct impact on antibody-mediated injury.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...