GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 11
    facet.materialart.
    Unknown
    GSA (Geological Society of America)
    In:  Geology, 42 (6). e337.
    Publication Date: 2020-11-04
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-13
    Description: Large submarine landslides can have serious socioeconomic consequences as they have the potential to cause tsunamis and damage seabed infrastructure. It is important to understand the frequency of these landslides, and how that frequency is related to climate-driven factors such as sea level or sedimentation rate, in order to assess their occurrence in the future. Recent studies have proposed that more landslides occur during periods of sea level rise and lowstand, or during periods of rapid sedimentation. In this contribution we test these hypotheses by analysing the most comprehensive global data set of ages for large (〉1 km3) late Quaternary submarine landslides that has been compiled to date. We include the uncertainties in each landslide age that arise from both the dating technique, and the typically larger uncertainties that result from the position of the samples used for dating. Contrary to the hypothesis that continental slope stability is linked to sea level change, the data set does not show statistically significant patterns, trends or clusters in landslide abundance. If such a link between sea level and landslide frequency exists it is too weak to be detected using the available global data base. It is possible that controlling factors vary between different geographical areas, and their role is therefore hidden in a global data set, or that the uncertainties within the dates is too great to see an underlying correlation. Our analysis also shows that there is no evidence for an immediate influence of rapid sedimentation on slope stability as failures tend to occur several thousand years after periods of increased sedimentation rates. The results imply that there is not a strong global correlation of landslide frequency with sea level changes or increases in local sedimentation rate, based on the currently available ages for large submarine landslides.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-06-12
    Description: Submarine landslides are one of the major mechanisms through which sediment is transported across our planet, and it has been proposed that they can generate exceptionally damaging tsunamis. Polar margins represent one of the environmental settings where these events have been identified. A large number of triggers and preconditioning factors have been proposed as possible causes for these events; including earthquakes, rapid sedimentation and gas hydrate dissociation. Rapid climate change in the Arctic has the potential to impact on these preconditioning and triggering factors. First, crustal rebound associated with ice melting is likely to produce larger and more frequent earthquakes. Second, Arctic Ocean warming over the next few decades may lead to dissociation of methane hydrates in marine sediments, thereby weakening sediment. In order to better understand whether landslide frequency will increase in the future, we need to determine whether landslide frequency has been affected by previous episodes of rapid climate or eustatic sea level change. Previous working whether landslide frequency is affected strongly by climatic change has been based predominantly on qualitative analysis, and has concluded that event clustering has occurred under specific environmental conditions. In contrast, two recent statistical investigations of submarine landslides have found events frequencies to follow a Poissonian distribution and thus are temporally random (Urlaub et al, 2013, QSR; Clare et al., Geology, Vol 42 (3)). However, these recent studies acknowledge the significant uncertainties in most landslide dates, and that these uncertainties could mask underlying relationships with climate or sea level. This presentation extends previous statistical work to assess whether landslide frequency is most likely temporally random, or whether the dating is just too uncertain to tell. Chi-Squared statistics are used to explore the extent to which we can be statistically sure that submarine landslides do indeed follow a Poissonian distribution. This is achieved by analysing the ease with which ordered frequency data can appear Poissonian according to the Chi-Squared statistic and the number of events needed before a certain distribution can be guaranteed. From this we are able comment on the extent to which we can use event frequency as a means with which to analyse triggers and preconditioning factors. We can also assess the implications for future submarine landslide risk analysis.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-09-23
    Description: Submarine landslides on open continental slopes can be prodigious in scale. They are an important process for global sediment fluxes, and can generate very damaging tsunamis. Submarine landslides are far harder to monitor directly than terrestrial landslides, and much greater uncertainty surrounds their preconditioning factors and triggers. Submarine slope failure often occurs on remarkably low (〈 2°) gradients that are almost always stable on land, indicating that particularly high excess pore pressures must be involved. Earthquakes trigger some large submarine landslides, but not all major earthquakes cause widespread slope failure. The headwalls of many large submarine landslides appear to be located in water depths that are too deep for triggering by gas hydrate dissociation. The available evidence indicates that landslide occurrence is either weakly (or not) linked to changes in sea level or atmospheric methane abundance, or the available dates for open continental slope landslides are too imprecise to tell. Similarly, available evidence does not strongly support a view that landslides play an important role in methane emissions that cause climatic change. However, the largest and best-dated open continental slope landslide (the Storegga Slide) coincides with a major cooling event 8,200 years ago. This association suggests that caution may be needed when stating that there is no link between large open slope landslides and climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 120 (10). pp. 6722-6739.
    Publication Date: 2017-05-02
    Description: Submarine landslides can cause damaging tsunamis, the height of which scales up with the volume of the displaced mass. The largest underwater landslides are far bigger than any landslides on land, and these submarine megaslides tend to occur on open continental slopes with remarkably low gradients of less than 2°. For geohazard assessments it is essential to understand what preconditions and triggers slope failure on such low gradients. Previous work has suggested that generation of high excess pore pressure due to rapid sediment deposition plays a key role in such failures. However, submarine slope failure also occurs where sedimentation rates are low (〈0.15 m/kyr), such as off northwest Africa. We use a fully coupled stress and fluid flow finite element model to test whether such low sedimentation rates can generate sufficient excess pore pressures to cause failure of a 2° slope. The sensitivity of overpressure generation and slope stability is assessed with respect to different sedimentation rates and patterns, sediment consolidation properties, and stratigraphic layer configurations. The simulations show that, in general, it is difficult to generate significant excess pore pressure if sediment accumulation is slow and the only pressure source. However, we identify a sediment compression behavior that can lead to submarine landslides in locations worldwide. Our results imply that compressibility is an important factor for the stability of low gradient continental slopes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  [Talk] In: 6. International Symposium on Submarine Mass Movements and Their Consequences, 23.-25.09.2013, Kiel, Germany .
    Publication Date: 2014-06-12
    Description: Submarine landslides on open continental slopes can be far larger than any slope failure on land and occur in locations worldwide on gradients of 〈2°. Significantly elevated pore pressure is necessary to overcome the sediment’s shearing resistance on such remarkably low gradients, but the processes causing such overpressure generation are contentious, especially in areas with slow sedimentation rates. Here we propose that the progressive loss of interparticle bonding and fabric could cause such high excess pore pressure. Slow sedimentation may favour the formation of a structural framework in the sediment that is load-bearing until yield stress is reached. The bonds then break down, causing an abrupt porosity decrease and consequently overpressure as pore fluid cannot escape sufficiently rapidly. To test this hypothesis, we implement such a loss of structure into a 2D fully coupled stress-fluid flow Finite Element model of a submerged low angle slope, and simulate consolidation due to slow sedimentation. The results suggest that destructuring could indeed be a critical process for submarine slope stability.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-06-09
    Description: Seabed telecommunication cables can be damaged or broken by powerful seafloor flows of sediment (called turbidity currents), which may runout for hundreds of kilometres into the deep ocean. These flows have the potential to affect multiple cables near-simultaneously over very large areas, so it is more challenging to reroute traffic or repair the cables. However, cable-breaking turbidity currents that runout into the deep ocean were poorly understood, and thus hard to predict, as there were no detailed measurements from these flows in action. Here we present the first detailed measurements from such cable-breaking flows, using moored-sensors along the Congo Submarine Canyon offshore West Africa. These turbidity currents include the furthest travelled sediment flow (of any type) yet measured in action on Earth. The SAT-3 (South Atlantic 3) and WACs (West Africa Cable System) cables were broken on 14-16th January 2020 by a turbidity current that accelerated from 5 to 8 m/s, as it travelled for 〉 1,130 km from river estuary to deep-sea, although a branch of the WACs cable located closer to shore survived. The SAT-3 cable was broken again on 9th March 2020 due to a second turbidity current, this time slowing data transfer during regional coronavirus (COVID-2019) lockdown. These cables had not experienced faults due to natural causes in the previous 19 years. The two cable-breaking flows are associated with a major flood along the Congo River, which produced the highest discharge (72,000m3) recorded at Kinshasa since the early 1960s, and this flood peak reached the river mouth on ~30th December 2019. However, the cable-breaking turbidity currents occurred 2-10 weeks after the flood peak and coincided with unusually large spring tides. Thus, the large cable-breaking flows in 2020 are caused by a combination of a major river flood and tides; and this can provide a basis for predicting the likelihood of future cable-breaking flows. Older (1883-1937) cable breaks in the Congo Submarine Canyon occurred in temporal clusters, sometimes after one or more years of high river discharge. Increased hazards to cables may therefore persist for several years after one or more river floods, which cumulatively prime the river mouth for cable-breaking flows. The 14-16th January 2020 flow accelerated from 5 to 8 m/s with distance, such that the closest cable to shore did not break, whilst two cables further from shore were broken. The largest turbidity currents may increase in power with distance from shore, and are more likely to overspill from their channel in distal sites. Thus, for the largest and most infrequent turbidity currents, locations further from shore can face lower-frequency but higher-magnitude hazards, which may need to be factored into cable route planning. Observations off Taiwan in 2006-2015, and the 2020 events in the Congo Submarine Canyon, show that although multiple cables were broken by fast (〉 5 m/s) turbidity currents, some intervening cables survived. This indicates that local factors can determine whether a cable breaks or not. Repeat seabed surveys of the canyon-channel floor show that erosion during turbidity currents is patchy and concentrated around steeper areas (knickpoints) in the canyon profile, which may explain why only some cables break. If possible, cables should be routed away from knickpoints, also avoiding locations just up-canyon from knickpoints, as knickpoints move up-slope. This study provides key new insights into long runout cable-breaking turbidity currents, and the hazards they pose to seafloor telecommunication cables.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Springer
    In:  In: Submarine Mass Movements and Their Consequences. , ed. by Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J. and Strasser, M. Advances in Natural and Technological Hazards Research, 31 . Springer, Dordrecht, Netherlands, pp. 277-287. ISBN 978-94-007-2161-6
    Publication Date: 2018-06-13
    Description: Overpressure generation due to rapid sediment deposition can result in low effective stresses within the sediment column. It has been proposed that these large overpressures are the main preconditioning factor for causing large-scale submarine slope failure on passive continental margins, such as those in the Gulf of Mexico and offshore Norway. The rate of overpressure generation depends on the sedimentation rate, sediment compressibility and permeability. The Gulf of Mexico and the Norwegian continental slope have experienced comparatively high sediment input, but large-scale slope failure also occurs in locations with very low sedimentation rates such as the Northwest African continental margin. Here we show results from 2D numerical modelling of a 2° continental slope subjected to deposition rates of 0.15 m/ka. These results do not indicate any evidence for significant overpressure or slope instability. We conclude that factors other than overpressure must be fundamental for initiating slope failure, at least in locations with low sedimentation rates.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Springer
    In:  In: Submarine Mass Movements and Their Consequences. , ed. by Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J. and Strasser, M. Advances in Natural and Technological Hazards Research, 31 . Springer, Dordrecht, Netherlands, pp. 277-287. ISBN 978-94-007-2161-6
    Publication Date: 2014-09-05
    Description: Overpressure generation due to rapid sediment deposition can result in low effective stresses within the sediment column. It has been proposed that these large overpressures are the main preconditioning factor for causing large-scale submarine slope failure on passive continental margins, such as those in the Gulf of Mexico and offshore Norway. The rate of overpressure generation depends on the sedimentation rate, sediment compressibility and permeability. The Gulf of Mexico and the Norwegian continental slope have experienced comparatively high sediment input, but large-scale slope failure also occurs in locations with very low sedimentation rates such as the Northwest African continental margin. Here we show results from 2D numerical modelling of a 2° continental slope subjected to deposition rates of 0.15 m/ka. These results do not indicate any evidence for significant overpressure or slope instability. We conclude that factors other than overpressure must be fundamental for initiating slope failure, at least in locations with low sedimentation rates.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  In: Submarine Mass Movements and Their Consequences: 6th International Symposium. Advances in Natural and Technological Hazards Research, 37 . Springer International Publishing, Cham, pp. 177-188. ISBN 978-3-319-00971-1
    Publication Date: 2018-06-13
    Description: Submarine landslides on open continental slopes can be far larger than any slope failure on land and occur in locations worldwide on gradients of 〈2°. Significantly elevated pore pressure is necessary to overcome the sediment’s shearing resistance on such remarkably low gradients, but the processes causing such overpressure generation are contentious, especially in areas with slow sedimentation rates. Here we propose that the progressive loss of interparticle bonding and fabric could cause such high excess pore pressure. Slow sedimentation may favour the formation of a structural framework in the sediment that is load-bearing until yield stress is reached. The bonds then break down, causing an abrupt porosity decrease and consequently overpressure as pore fluid cannot escape sufficiently rapidly. To test this hypothesis, we implement such a loss of structure into a 2D fully coupled stress-fluid flow Finite Element model of a submerged low angle slope, and simulate consolidation due to slow sedimentation. The results suggest that destructuring could indeed be a critical process for submarine slope stability.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...