GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2016-10-16
    Description: Thermokarst lakes are abundant and highly dynamic landscape features of permafrost lowland regions in western Alaska and provide important ecosystem services as habitats, hydrological feature, biogeochemical hotspots, and for surface energy budgets. Permafrost in this ca. 300,000 km2 region follows approximately a North to South gradient of spatial continuity from continuous to sporadic permafrost zones, which also affects lakes and their dynamics on various temporal and spatial scales. Climate change in western Alaska has resulted in a significant warming of air and ground temperatures over the last decades and is projected to continue on that trajectory. To characterize the vulnerability of lakes as well as permafrost to climate change in this region, we assessed historic lake changes in major lake districts of western Alaska for the period ca. 1950 to ca. 2015 using various remote sensing approaches within a set of several independently funded studies. In particular, we were interested in the dynamics of lake growth and drainage in relation to permafrost degradation. Our method focused on the analysis of image time series built from the 30-60m resolution Landsat record for the 1970-2015 period. The observation period was further extended by unaltered historic USGS topographic maps that contain hydrology features and are based on aerial photography from ca. 1950. Our remote sensing studies were complemented by permafrost and lake hydrology field studies as well as aerial flights to validate remotely sensed lake drainage events. Additional validation of lake change was conducted locally with high resolution imagery from Spot-5, aerial photographs, and the DigitalGlobe constellation of satellites. Here, we synthesize the core results from these studies. The data was processed in three main categories. First we extracted water bodies from recent (2013-2015) Landsat-8 Observing Land Imager (OLI) images of the entire region using simple pixel threshold methods in ENVITM and compared these with waterbodies digitally extracted with ArcGISTM tools from unaltered historic (ca. 1950) USGS topographic map data to identify hotspots of lake change for the entire 65 year period. Second, we processed Landsat data covering major lake districts in the region from three time periods using an object-based segmentation and classification method specifically designed for lake extraction in eCognitionTM. Third, we applied a robust trend analysis developed with open source software and established image pre-processing algorithms to the entire Landsat-record for several large subregions to derive Tasseled Cap, NDVI, and NDWI land cover indices which are useful for studying annual trends in lake changes. Our findings suggest that a significant portion of lakes in this region has drained over the last decades and that in particular large lakes are vulnerable to disappearance. Initial analyses of relationships of lake drainages with permafrost distribution in the region suggest positive correlations between lake loss and permafrost degradation in much of the region. Our findings highlight that permafrost and lake-rich landscapes in Alaska are already changing rapidly and permanently in a warming world. This set of studies was supported by funding from NASA Carbon Cycle Sciences, NSF Arctic System Sciences, an European Research Council Starting Grant, and the Western Alaska Landscape Conservation Cooperative. Our study of lake dynamics in a thaw vulnerable permafrost landscape affected by climate change highlights the need for continuation of the Landsat mission as well as the increase of observation density with the new ESA Sentinel-2 mission.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Global Change Biology, WILEY-BLACKWELL PUBLISHING, ISSN: 1354-1013
    Publication Date: 2019-05-30
    Description: Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293 km2) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-09-23
    Description: Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1m depth) lakes have warmed substantially over the last 30years (2.4°C), withMABT above freezing5 of the last 7years.This is incomparison to slower ratesofwarming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Scientific Reports, Nature Publishing Group, 5, pp. 15865, ISSN: 2045-2322
    Publication Date: 2015-10-31
    Description: Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Biogeosciences, Copernicus Publications, 12(1), pp. 29-47, ISSN: 1726-4170
    Publication Date: 2015-01-09
    Description: Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium to high ground-ice content permafrost in moderately sloping terrain. In one Arctic coastal plain watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. The comparisons of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform, and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene–Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones, effectively insulate channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features that range from 0.7 to 1.6 m. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains cold-water habitats. Snowmelt-generated peak flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.01 to 0.1 m s−1, yet channel runs still move water rapidly between pools. The repeating spatial pattern associated with beaded stream morphology and hydrological dynamics may provide abundant and optimal foraging habitat for fish. Beaded streams may create important ecosystem functions and habitat in many permafrost landscapes and their distribution and dynamics are only beginning to be recognized in Arctic research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-04-02
    Description: Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed‐talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal‐scale expansion rates of 0.16, 0.38, and 0.58 m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91 m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400 years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80 m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum‐Arctic coastal lowland regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-12-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-04-02
    Description: Degradation of sub-aquatic permafrost can release large quantities of methane into the atmosphere, impact offshore drilling activities, and affect coastal erosion. The degradation rate depends on the duration of inundation, warming rate, sediment characteristics, the coupling of the bottom to the atmosphere through bottom-fast ice, and brine injections into the sediment. The relative importance of these controls on the rate of sub-aquatic permafrost degradation, however, remains poorly understood. This poster presents a conceptual evaluation of sub-aquatic permafrost thaw mechanisms and an approach to their representation using one-dimensional modelling of heat and dissolved salt diffusion. We apply this model to permafrost degradation observed below Peatball Lake on the Alaska North Slope and compare modelling results to talik geometry information inferred from transient electromagnetic (TEM) soundings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-07-03
    Description: Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here, we present a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM, ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (−0.69%), Western Alaska (−2.82%), and Kolyma Lowland (−0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e., upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-05-25
    Description: Since 2012, 60 lakes in northern Alaska have been instrumented under the auspices of CALON, a project designed to document landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain. The network has ten observation nodes along two latitudinal transects extending from the Arctic Ocean inland some 200 km to the Brooks Range foothills. At each node, a meteorological station is deployed, and six representative lakes of differing area and depth are instrumented and sampled at different intensity levels to collect basic field measurements. In April, sensors measuring water temperature and depth are deployed through the ice in each lake, ice and snow thickness recorded, and water samples are collected. Data are downloaded, lakes re-sampled, and bathymetric surveys are conducted in August. In 2014, the snow cover on inland lakes was thinner than in previous years but thicker on lakes located near the coast. Lake ice was generally thinner near the coast, but the difference diminished inland. Winters (Oct-March) have been progressively warmer over the 3-year period, which partially explains the thinner lake ice that formed in 2013-14. Lakes are typically well–mixed and largely isothermal, with minor thermal stratification occurring in deeper lakes during calm, sunny periods. These regional lake and meteorological data sets, used in conjunction with satellite imagery, supports the wind-driven lake circulation model for the origin of thermokarst lakes. Results of biogeochemical analyses of lake waters generally show notably higher concentrations of cations/anions, chromophoric dissolved organic matter, and chlorophyll-a during April as compared with August. Dissolved methane concentrations are also much higher under ice than in open water during summer, although all lakes are a source of atmospheric methane. Interviews with indigenous elders in Anaktuvuk Pass indicate that mountain lakes are drying up. During the 2014 breakup period, 350 entrants participated in the 2nd Annual Toolik Lake Ice Classic including elementary school children, the general public, and international researchers. Ice off occurred on 23 June, and 11 people correctly guessed this day. All field data is archived at A-CADIS, and further information is at www.arcticlakes.org.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...