GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Aquatic Sciences, Springer Science and Business Media LLC, Vol. 81, No. 1 ( 2019-1)
    Type of Medium: Online Resource
    ISSN: 1015-1621 , 1420-9055
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1000078-1
    detail.hit.zdb_id: 1464021-1
    SSG: 12
    SSG: 21,3
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Earth Science Vol. 11 ( 2023-2-22)
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 11 ( 2023-2-22)
    Abstract: Dredged cohesive sediment is progressively being used for wetland construction. However, little is known about the effect of plant growth during the self-weight consolidation of this sediment. In order to check the feasibility of such a study, a new experimental setup has been constructed. As an example, the effect of Phragmites australis on the consolidation and drainage of dredged sediment from Lake Markermeer, the Netherlands was investigated. The changes in pore water pressures at 10 cm depth intervals during a 129-day period in a column with and without plants were measured, while the water level was fixed at a constant level. Water loss via evaporation and plant transpiration was measured using Mariotte bottles and the photosynthetic processes — including plant transpiration — were measured with a LI-COR photosynthesis system. The results show that several processes initiated by Phragmites australis interfere with the physical processes involved in sediment drainage and consolidation. Phragmites australis effectively altered the pore pressure gradient via water extraction, especially between 40 and 60 cm from the bottom of the column. In this zone, daily cycles in pore pressures were observed which could directly be linked to the diurnal cycle of stomatal gas exchange. On average, water loss via evaporation and transpiration of leaves of Phragmites australis amounted to 3.9 mm day −1 , whereas evaporation of bare soil amounted on average to 0.6 mm day −1 . The depth-averaged hydraulic conductivity increased on average by 40% in presence of Phragmites australis . This pilot experiment confirms that the pressures sensors coupled with the new set-up enable to study pore pressure development over time and to link the effect of plant growth with alterations in water pressures profiles. A more systematic study with this set-up will in the future enable to quantify the effects of plant growth on consolidation.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Journal of Marine Science and Engineering Vol. 8, No. 11 ( 2020-11-12), p. 910-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 8, No. 11 ( 2020-11-12), p. 910-
    Abstract: Sediment transport over intertidal flats is driven by a combination of waves, tides, and wind-driven flow. In this study we aimed at identifying and quantifying the interactions between these processes. A five week long dataset consisting of flow velocities, waves, water depths, suspended sediment concentrations, and bed level changes was collected at two locations across a tidal flat in the Wadden Sea (The Netherlands). A momentum balance was evaluated, based on field data, for windy and non-windy conditions. The results show that wind speed and direction have large impacts on the net flow, and that even moderate wind can reverse the tidal flow. A simple analytical tide–wind interaction model shows that the wind-induced reversal can be predicted as a function of tidal flow amplitude and wind forcing. Asymmetries in sediment transport are not only related to the tide–wind interaction, but also to the intratidal asymmetries in sediment concentration. These asymmetries are influenced by wind-induced circulation interacting with the large scale topography. An analysis of the shear stresses induced by waves and currents revealed the relative contributions of local processes (resuspension) and large-scale processes (advection) at different tidal flat elevations.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1989
    In:  Journal of Geophysical Research: Oceans Vol. 94, No. C10 ( 1989-10-15), p. 14341-14350
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 94, No. C10 ( 1989-10-15), p. 14341-14350
    Abstract: To describe the transport of cohesive sediments, it is necessary to specify the erosion flux at the bed. Experiments on the erosion of soft mud layers in a steady flow were performed in the Delft Tidal Flume and in an annular flume. The results were analyzed using the erosion rate function as derived by Parchure and Mehta. It is concluded that a reasonable description is possible. However, the floc erosion rate appeared to be a function of the bed shear stress. In one case the erosion rate function needed to be adjusted slightly in order to obtain agreement between measured and calculated suspension concentrations.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1989
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Physical Oceanography Vol. 41, No. 1 ( 2011-01-01), p. 3-27
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 41, No. 1 ( 2011-01-01), p. 3-27
    Abstract: An analysis of field measurements recorded over a tidal cycle in the Rotterdam Waterway is presented. These measurements are the first to elucidate the processes influencing the along-channel current structure and the excursion of the salt wedge in this estuary. The salt wedge structure remained stable throughout the measuring period. The velocity measurements indicate decoupling effects between the layers and that bed-generated turbulence is confined below the pycnocline. The barotropic M4 overtide structure is imposed at the mouth of the estuary, and the generation of M4 overtides within the estuary is found to be relatively small. Internal tidal asymmetry does not make a significant contribution to the M4 velocity frequency band. Instead, the combination of barotropic and baroclinic forcing, in conjunction with the suppression of turbulence at the interface, provides the main explanation for the time dependence and mean structure of the flow in the Rotterdam Waterway. This gives rise to the observed differences in the length of the flood and ebb, in the magnitudes of the flood and ebb velocities, in the length of the slack water periods, and in the timing of the onset of slack water at the surface and near the bed. It results in the formation of distinct exchange flow profiles at the head of the salt wedge around slack water and the creation of maximal velocities at the pycnocline during flood. Advection governs the displacement and structure of the salt wedge since turbulent mixing is suppressed. The tidal displacement of the salt wedge controls the height of the pycnocline above the bed at a particular site. Hence, it controls the height to which bed-generated turbulence can protrude into the water column. Consequently, the authors find asymmetries in the structure of the internal flow, turbulent mixing, and bed stresses that are not related to classical internal tidal asymmetry.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2006
    In:  Ocean Dynamics Vol. 56, No. 3-4 ( 2006-7), p. 198-216
    In: Ocean Dynamics, Springer Science and Business Media LLC, Vol. 56, No. 3-4 ( 2006-7), p. 198-216
    Type of Medium: Online Resource
    ISSN: 1616-7341 , 1616-7228
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2006
    detail.hit.zdb_id: 2063267-8
    detail.hit.zdb_id: 201122-0
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Ocean Dynamics Vol. 63, No. 11-12 ( 2013-12), p. 1279-1292
    In: Ocean Dynamics, Springer Science and Business Media LLC, Vol. 63, No. 11-12 ( 2013-12), p. 1279-1292
    Type of Medium: Online Resource
    ISSN: 1616-7341 , 1616-7228
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2063267-8
    detail.hit.zdb_id: 201122-0
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Ocean Dynamics Vol. 70, No. 4 ( 2020-04), p. 435-462
    In: Ocean Dynamics, Springer Science and Business Media LLC, Vol. 70, No. 4 ( 2020-04), p. 435-462
    Abstract: Estuarine sediment dynamics are a consequence of various forcings (barotropic, estuarine circulation, and fluvial) that vary in space and time. Here, we present a study examining sediment dynamics in a narrow microtidal estuary, the Lower Passaic River in New Jersey, USA. The analysis incorporates measurements of suspended sediments, morphological change, sediment erodibility, and a numerical hydrodynamic model. The former two datasets are used to develop an understanding of sediment dynamics over the full range of hydrologic conditions, and the latter two datasets are used to interpret the behavior of the system. Subsequently, a conceptual picture is developed, one that classifies the morphological status of the system at any given time into three regimes dependent on river flow—regime I includes conditions when the system is importing sediments, regime II includes conditions when the system is exporting sediments by flushing a thin easily erodible surficial stratum termed the fluff layer, and regime III includes conditions when the system is exporting sediments by scouring more consolidated strata underneath the fluff layer. Regime III is relevant for the long-term morphodynamic equilibrium of the estuary by providing a mechanism that erodes and exports sediment accumulated under regime I conditions. Consequently, sediment dynamics depend not only on short time-scale processes such as the instantaneous river flow rate, but also on the time-history of river flow, and the long-term morphological progression of the system. These regimes represent a conceptualization of estuarine sediment transport dynamics and can be useful in the development of effective estuarine sediment management strategies.
    Type of Medium: Online Resource
    ISSN: 1616-7341 , 1616-7228
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2063267-8
    detail.hit.zdb_id: 201122-0
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2003
    In:  Ocean Dynamics Vol. 53, No. 3 ( 2003-9-1), p. 186-196
    In: Ocean Dynamics, Springer Science and Business Media LLC, Vol. 53, No. 3 ( 2003-9-1), p. 186-196
    Type of Medium: Online Resource
    ISSN: 1616-7341 , 1616-7228
    Language: Unknown
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2003
    detail.hit.zdb_id: 2063267-8
    detail.hit.zdb_id: 201122-0
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Earth Science Vol. 10 ( 2022-2-24)
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 10 ( 2022-2-24)
    Abstract: Progressively, more dredged sediments are being reused for engineering projects. For example, the Marker Wadden is a new wetland constructed in lake Markermeer, the Netherlands, with dredged cohesive sediments originating from the bed of the lake. Such dredged sediments are often dominated by cohesive sediment particles with varying amounts of sand and organic matter. In addition, during and after the construction process, the material consolidates and is often compressed from a very loose state into a significantly denser condition. To assess the mechanical behavior of this material, the compressibility of the Markermeer dredged sediment samples with various sand and organic matter contents was analyzed with incremental loading oedometer tests, whereas the undrained shear strength was studied using the fall cone test. The behavior was theoretically analyzed assuming a fractal structure of the sediment and applying power law constitutive equations for effective stress, hydraulic conductivity, and undrained shear strength. These constitutive equations, usually used at low initial sediment densities, worked well at the relatively high initial densities studied and proved to be a useful tool to identify the transition fines content TFC. The constitutive equations were put in context with indicators traditionally used in soil mechanics. Samples, each with an identical composition of the fines fraction (particles & lt; 63 μm), but with a sand content varying from 9 to 40%, showed the same compressibility and undrained shear strength behavior when considering the sand a filler material. For a natural sand content of 70%, the behavior was dominated by sand. The organic matter oxidation was observed to drastically decrease the compressibility and the shear strength, and even to decrease the amount of sand needed to exhibit sand-dominated behavior, showing the importance of the reactivity or state of organic matter on the TFC.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...