GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    In: Earth System Science Data, Copernicus GmbH, Vol. 15, No. 5 ( 2023-05-16), p. 2009-2023
    Abstract: Abstract. As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions, and feedbacks in complex human–water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e. two floods or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number of cases assessed and in the quantity of socio-hydrological data. The benchmark dataset comprises (1) detailed review-style reports about the events and key processes between the two events of a pair; (2) the key data table containing variables that assess the indicators which characterize management shortcomings, hazard, exposure, vulnerability, and impacts of all events; and (3) a table of the indicators of change that indicate the differences between the first and second event of a pair. The advantages of the dataset are that it enables comparative analyses across all the paired events based on the indicators of change and allows for detailed context- and location-specific assessments based on the extensive data and reports of the individual study areas. The dataset can be used by the scientific community for exploratory data analyses, e.g. focused on causal links between risk management; changes in hazard, exposure and vulnerability; and flood or drought impacts. The data can also be used for the development, calibration, and validation of socio-hydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al., 2023, https://doi.org/10.5880/GFZ.4.4.2023.001).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    Granthaalayah Publications and Printers ; 2020
    In:  International Journal of Engineering Technologies and Management Research Vol. 4, No. 7 ( 2020-02-01), p. 13-31
    In: International Journal of Engineering Technologies and Management Research, Granthaalayah Publications and Printers, Vol. 4, No. 7 ( 2020-02-01), p. 13-31
    Abstract: “Resiliency” for communities at risk from sea level rise and its effects means preserving as much property and associated economic activity as possible without disrupting current activity or expending funds on projects that provide limited long-term utility or social value. Of interest is how the coincidence of these events impacts the need for storm water improvements and the financial obligations they will entail. This research project focused on the impacts of a non-coastal, groundwater influenced southeast Florida community and the long-term funding they will need to reduce flooding in the community using GIS. This research involved defining surface elevations and groundwater levels, assessing the impacts of sea level rise on groundwater, assessing impacts to storm water from rainfall, identifying likely improvements, and assessing the scale for improvements. The analysis used three extreme rainstorm events under the 0-, 1-, 2-, and 3-foot sea level rise scenarios to determine the magnitude of the cost of the improvements. For a 35-square mile community, our research estimated that the cost could exceed $300 million. For a community not directly adjacent to the coast, the magnitude of these costs should be of interest to similarly placed communities.
    Type of Medium: Online Resource
    ISSN: 2454-1907
    URL: Issue
    Language: Unknown
    Publisher: Granthaalayah Publications and Printers
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Water Vol. 4 ( 2022-2-18)
    In: Frontiers in Water, Frontiers Media SA, Vol. 4 ( 2022-2-18)
    Abstract: Flood vulnerability is quantified by loss models which are developed using either empirical or synthetic approaches. In reality, processes influencing flood risk are stochastic and loss predictions bear significant uncertainty, especially due to differences in vulnerability across exposed objects and regions. However, many state-of-the-art flood loss models are deterministic, i.e., they do not account for data and model uncertainty. The Bayesian Data-Driven Synthetic (BDDS) model was one of the first approaches that used empirical data to reduce the prediction errors at object-level and enhance the reliability of synthetic flood loss models. However, the BDDS model does not account for regional differences in vulnerability which may result in over-/under-estimation of losses in some regions. In order to overcome this limitation, this study introduces a hierarchical parameterization of the BDDS model which enhances synthetic flood loss model predictions by quantifying regional differences in vulnerability. The hierarchical parameterization makes optimal use of the process information contained in the overall data set for the various regional applications, so that it is particularly suitable for cases in which only a small amount of empirical data is available. The implementation and performance of the hierarchical parametrization is demonstrated with the Multi-Colored Manual (MCM) loss functions and empirical damage dataset from the UK consisting of residential buildings from the regions Appleby, Carlisle, Kendal and Cockermouth that suffered losses during the 2015 flood event. The developed model improves prediction accuracy of flood loss compared to MCM by reducing the absolute error and bias by at least 23 and 90%, respectively. The model reliability in terms of hit rate (i.e., the probability that the observed value lies in the 90% high density interval of predictions) is 88% for residential buildings from the same regions used for calibration and 73% for residential buildings from new regions. The approach is of high practical relevance for all regions where only limited amounts of empirical flood loss data is available.
    Type of Medium: Online Resource
    ISSN: 2624-9375
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2986721-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    MDPI AG ; 2016
    In:  Sensors Vol. 16, No. 3 ( 2016-03-12), p. 367-
    In: Sensors, MDPI AG, Vol. 16, No. 3 ( 2016-03-12), p. 367-
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2016
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    In: Nature, Springer Science and Business Media LLC, Vol. 608, No. 7921 ( 2022-08-04), p. 80-86
    Abstract: Risk management has reduced vulnerability to floods and droughts globally 1,2 , yet their impacts are still increasing 3 . An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data 4,5 . On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change 3 .
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...