GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier BV, Vol. 139 ( 2017-05), p. 58-76
    Type of Medium: Online Resource
    ISSN: 0967-0645
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1141627-0
    detail.hit.zdb_id: 1500312-7
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Limnology and Oceanography Letters, Wiley, Vol. 6, No. 1 ( 2021-02), p. 24-32
    Abstract: Knowledge of species trophic position (TP) is an essential component of ecosystem management. Determining TP from stable nitrogen isotopes (δ 15 N) in predators requires understanding how these tracers vary across environments and how they relate to predator isotope composition. We used two seal species as a model for determining TP across large spatial scales in the Arctic. δ 15 N in seawater nitrate (δ 15 N NO3 ) and seal muscle amino acids (δ 15 N AA ) were determined to independently characterize the base of the food web and the TP of harp and ringed seals, demonstrating a direct link between δ 15 N NO3 and δ 15 N AA . Our results show that the spatial variation in δ 15 N AA in seals reflects the δ 15 N NO3 end members in Pacific vs. Atlantic waters. This study provides a reference for best practice on accurate comparison of TP in predators and as such, provides a framework to assess the impact of environmental and human‐induced changes on ecosystems at pan‐Arctic scales.
    Type of Medium: Online Resource
    ISSN: 2378-2242 , 2378-2242
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2876718-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biogeosciences, Copernicus GmbH, Vol. 19, No. 24 ( 2022-12-22), p. 5973-6002
    Abstract: Abstract. Ongoing climate change in the Arctic has caused tidewater glaciers to retreat while increasing the discharge of freshwater and terrestrial material into fjords. This can affect both nutrient inputs and cycling within the fjord systems. In particular, tidewater glaciers and the presence of associated subglacial meltwater plumes can have a large impact on fjord circulation and biogeochemistry. In this study, we assess the influence of tidewater glaciers on nitrogen inputs and cycling in two fjords in Svalbard during the summer using stable isotopic analyses of dissolved nitrate (δ15N and δ18O) in combination with nutrient and hydrographic data. Kongsfjorden receives inputs from tidewater glaciers, whereas Rijpfjorden mainly receives surface inputs from land-terminating glaciers. Results showed that both fjords are enriched in nutrients from terrestrial inputs. Nutrient ratios indicate excess Si and P relative to N. In both fjords, terrestrial nitrate from snowpack and glacier melting are identified as the dominant sources based on high δ18O-NO3- and low δ15N-NO3- of dissolved nitrate. In Kongsfjorden, mixed-layer nitrate is completely consumed within the fjord system, which we attribute to vigorous circulation at the glacial front influenced by the subglacial plume and longer residence time in the fjord. This is in contrast to Rijpfjorden where nutrients are only partially consumed perhaps due to surface river discharge and light limitation. In Kongsfjorden, we estimate terrestrial and marine N contributions to the nitrate pool from nitrogen isotopic values (δ15N-NO3-), and this suggests that nearly half the nitrate in the subglacial plume (50 ± 3 %) and the water column (44 ± 3 %) originates from terrestrial sources. We show that terrestrial N contributes significantly to the regenerated N pool (63 %–88 %) within this fjord suggesting its importance in sustaining productivity here. Given this importance of terrestrial nutrient sources within the fjords, increase in these inputs due to climate change can enhance the fjord nutrient inventory, productivity and nutrient export offshore. Specifically, increasing Atlantification and warmer Atlantic Water will encourage tidewater glacier retreat and in turn increase surface discharge. In fjords akin to Rijpfjorden this is expected to foster more light limitation and less dynamic circulation, ultimately aiding the export of nutrients offshore contributing to coastal productivity. Climate change scenarios postulated for fjords such as Kongsfjorden include more terrestrial N-fuelled productivity and N cycling within the fjord, less vigorous circulation due to the retreat of tidewater glaciers, and the expansion of oxygen-depleted deep waters isolated by the sill.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biogeosciences, Copernicus GmbH, Vol. 20, No. 2 ( 2023-01-24), p. 365-382
    Abstract: Abstract. Across the Arctic, vast areas of permafrost are being degraded by climate change, which has the potential to release substantial quantities of nutrients, including nitrogen into large Arctic rivers. These rivers heavily influence the biogeochemistry of the Arctic Ocean, so it is important to understand the potential changes to rivers from permafrost degradation. This study utilized dissolved nitrogen species (nitrate and dissolved organic nitrogen (DON)) along with nitrogen isotope values (δ15N-NO3- and δ15N-DON) of samples collected from permafrost sites in the Kolyma River and the six largest Arctic rivers. Large inputs of DON and nitrate with a unique isotopically heavy δ15N signature were documented in the Kolyma, suggesting the occurrence of denitrification and highly invigorated nitrogen cycling in the Yedoma permafrost thaw zones along the Kolyma. We show evidence for permafrost-derived DON being recycled to nitrate as it passes through the river, transferring the high 15N signature to nitrate. However, the potential to observe these thaw signals at the mouths of rivers depends on the spatial scale of thaw sites, permafrost degradation, and recycling mechanisms. In contrast with the Kolyma, with near 100 % continuous permafrost extent, the Ob River, draining large areas of discontinuous and sporadic permafrost, shows large seasonal changes in both nitrate and DON isotopic signatures. During winter months, water percolating through peat soils records isotopically heavy denitrification signals in contrast with the lighter summer values when surface flow dominates. This early year denitrification signal was present to a degree in the Kolyma, but the ability to relate seasonal nitrogen signals across Arctic Rivers to permafrost degradation could not be shown with this study. Other large rivers in the Arctic show different seasonal nitrogen trends. Based on nitrogen isotope values, the vast majority of nitrogen fluxes in the Arctic rivers is from fresh DON sourced from surface runoff through organic-rich topsoil and not from permafrost degradation. However, with future permafrost thaw, other Arctic rivers may begin to show nitrogen trends similar to the Ob. Our study demonstrates that nitrogen inputs from permafrost thaw can be identified through nitrogen isotopes, but only on small spatial scales. Overall, nitrogen isotopes show potential for revealing integrated catchment wide nitrogen cycling processes.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 18 ( 2019-09-24), p. 3621-3635
    Abstract: Abstract. The stable isotopic composition of particulate organic carbon (δ13CPOC) in the surface waters of the global ocean can vary with the aqueous CO2 concentration ([CO2(aq)]) and affects the trophic transfer of carbon isotopes in the marine food web. Other factors such as cell size, growth rate and carbon concentrating mechanisms decouple this observed correlation. Here, the variability in δ13CPOC is investigated in surface waters across the south subtropical convergence (SSTC) in the Atlantic Ocean, to determine carbon isotope fractionation (εp) by phytoplankton and the contrasting mechanisms of carbon uptake in the subantarctic and subtropical water masses. Our results indicate that cell size is the primary determinant of δ13CPOC across the Atlantic SSTC in summer. Combining cell size estimates with CO2 concentrations, we can accurately estimate εp within the varying surface water masses in this region. We further utilize these results to investigate future changes in εp with increased anthropogenic carbon availability. Our results suggest that smaller cells, which are prevalent in the subtropical ocean, will respond less to increased [CO2(aq)] than the larger cells found south of the SSTC and in the wider Southern Ocean. In the subantarctic water masses, isotopic fractionation during carbon uptake will likely increase, both with increasing CO2 availability to the cell, but also if increased stratification leads to decreases in average community cell size. Coupled with decreasing δ13C of [CO2(aq)] due to anthropogenic CO2 emissions, this change in isotopic fractionation and lowering of δ13CPOC may propagate through the marine food web, with implications for the use of δ13CPOC as a tracer of dietary sources in the marine environment.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Global Biogeochemical Cycles, American Geophysical Union (AGU), Vol. 33, No. 8 ( 2019-08), p. 995-1009
    Abstract: Internal tides provide a tenfold increase in diapycnal nitrate fluxes to the deep chlorophyll maximum over the Mid‐Atlantic Ridge Diapycnal nitrate fluxes increase by a factor of 8 between neap and spring tides Global tidal modeling experiments reveal that spring‐neap enhancement in diapycnal nitrate fluxes is widespread over ridges and seamounts
    Type of Medium: Online Resource
    ISSN: 0886-6236 , 1944-9224
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2021601-4
    SSG: 12
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Global Biogeochemical Cycles, American Geophysical Union (AGU), Vol. 35, No. 8 ( 2021-08)
    Type of Medium: Online Resource
    ISSN: 0886-6236 , 1944-9224
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 2021601-4
    SSG: 12
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Biogeosciences, Copernicus GmbH, Vol. 19, No. 7 ( 2022-04-14), p. 2079-2094
    Abstract: Abstract. Organic carbon (OC) stored in Arctic permafrost represents one of Earth's largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits is still poorly quantified. We define the OM quality as the intrinsic potential for further transformation, decomposition and mineralisation. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of Late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ∼52 kyr. We showed that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt %). The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal ka BP) and are overlaid by last glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso- and anteiso-branched fatty acids (FAs) relative to mid- and long-chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C/N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease in HPFA values downwards along the profile probably indicates stronger OM decomposition in the oldest (MIS 3) deposits of the cliff. The characterisation of OM from eroding permafrost leads to a better assessment of the greenhouse gas potential of the OC released into river and nearshore waters in the future.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Environmental Science Vol. 9 ( 2021-5-5)
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 9 ( 2021-5-5)
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2741535-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Global Biogeochemical Cycles, American Geophysical Union (AGU), Vol. 35, No. 12 ( 2021-12)
    Abstract: Diapycnal mixing and advection and mesoscale eddy stirring supply nutrients to some of the most oligotrophic waters in the North Atlantic Diapycnal loss of nutrients below the seasonal boundary layer is partly replenished by eddy stirring in the upper thermocline Relay race of nutrient supply by eddy stirring to the upper thermocline passed on by diapycnal mixing and advection to the euphotic zone
    Type of Medium: Online Resource
    ISSN: 0886-6236 , 1944-9224
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 2021601-4
    SSG: 12
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...