GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Optics Letters, Optica Publishing Group, Vol. 45, No. 13 ( 2020-07-01), p. 3541-
    Abstract: We demonstrate calibration and operation of a single wavelength (660 nm) Mueller matrix ellipsometer in normal transmission configuration using dual continuously rotating anisotropic mirrors. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick gold layers on glass substrates. Upon rotation around the mirror normal axis, sufficient modulation of the Stokes parameters of light reflected at oblique angle of incidence is achieved. Thereby, the mirrors can be used as a polarization state generator and polarization state analyzer in a generalized ellipsometry instrument. A Fourier expansion approach is found sufficient to render and calibrate the effects of the mirror rotations onto the polarized light train within the ellipsometer. The Mueller matrix elements of a set of anisotropic samples consisting of a linear polarizer and a linear retarder are measured and compared with model data, and very good agreement is observed.
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2020
    detail.hit.zdb_id: 243290-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Optics Express, Optica Publishing Group, Vol. 29, No. 18 ( 2021-08-30), p. 28704-
    Abstract: We demonstrate calibration and operation of a Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors for polarization state generation and analysis. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick titanium layers on quartz substrates. The first mirror acts as polarization state image generator and the second mirror acts as polarization state image detector. The instrument is calibrated using samples consisting of laterally homogeneous properties such as straight-through-air, a clear aperture linear polarizer, and a clear aperture linear retarder waveplate. Mueller matrix images are determined for spatially varying anisotropic samples consisting of a commercially available (Thorlabs) birefringent resolution target and a spatially patterned titanium slanted columnar thin film deposited onto a glass substrate. Calibration and operation are demonstrated at a single wavelength (530 nm) only, while, in principle, the instrument can operate regardless of wavelength. We refer to this imaging ellipsometry configuration as rotating-anisotropic-mirror-sample-rotating-anisotropic-mirror ellipsometry (RAM-S-RAM-E).
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Advanced Functional Materials, Wiley, Vol. 31, No. 20 ( 2021-05)
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Advanced Functional Materials, Wiley, Vol. 31, No. 20 ( 2021-05)
    Abstract: Designing broadband enhanced chirality is of strong interest to the emerging fields of chiral chemistry and sensing, or to control the spin orbital momentum of photons in recently introduced nanophotonic chiral quantum and classical optical applications. However, chiral light‐matter interactions have an extremely weak nature, are difficult to control and enhance, and cannot be made tunable or broadband. In addition, planar ultrathin nanophotonic structures to achieve strong, broadband, and tunable chirality at the technologically important visible to ultraviolet spectrum still remain elusive. Here, these important problems are tackled by experimentally demonstrating and theoretically verifying spectrally tunable, extremely large, and broadband chiroptical response by nanohelical metamaterials. The reported new designs of all‐dielectric and dielectric‐metallic (hybrid) plasmonic metamaterials permit the largest and broadest ever measured chiral Kuhn's dissymmetry factor achieved by a large‐scale nanophotonic structure. In addition, the strong circular dichroism of the presented bottom‐up fabricated optical metamaterials can be tuned by varying their dimensions and proportions between their dielectric and plasmonic helical subsections. The currently demonstrated ultrathin optical metamaterials are expected to provide a substantial boost to the developing field of chiroptics leading to significantly enhanced and broadband chiral light‐matter interactions at the nanoscale.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-01-11)
    Abstract: We report on fabrication of spatially-coherent columnar plasmonic nanostructure superlattice-type thin films with high porosity and strong optical anisotropy using glancing angle deposition. Subsequent and repeated depositions of silicon and gold lead to nanometer-dimension subcolumns with controlled lengths. We perform generalized spectroscopic ellipsometry measurements and finite element method computations to elucidate the strongly anisotropic optical properties of the highly-porous Si-Au slanted columnar heterostructures. The occurrence of a strongly localized plasmonic mode with displacement pattern reminiscent of a dark quadrupole mode is observed in the vicinity of the gold subcolumns. We demonstrate tuning of this quadrupole-like mode frequency within the near-infrared spectral range by varying the geometry of Si-Au slanted columnar heterostructures. In addition, coupled-plasmon-like and inter-band transition-like modes occur in the visible and ultra-violet spectral regions, respectively. We elucidate an example for the potential use of Si-Au slanted columnar heterostructures as a highly porous plasmonic sensor with optical read out sensitivity to few parts-per-million solvent levels in water.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: iScience, Elsevier BV, Vol. 26, No. 5 ( 2023-05), p. 106701-
    Type of Medium: Online Resource
    ISSN: 2589-0042
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2927064-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Biological Psychiatry, Elsevier BV, Vol. 91, No. 1 ( 2022-01), p. 102-117
    Type of Medium: Online Resource
    ISSN: 0006-3223
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1499907-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 378, No. 6615 ( 2022-10-07)
    Abstract: Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century. Expanse of SARS-CoV-2 sequencing capacity in Africa. ( A ) African countries (shaded in gray) and institutions (red circles) with on-site sequencing facilities that are capable of producing SARS-CoV-2 whole genomes locally. ( B ) The number of SARS-CoV-2 genomes produced per country and the proportion of those genomes that were produced locally, regionally within Africa, or abroad. ( C ) Decreased turnaround time of sequencing output in Africa to an almost real-time release of genomic data.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Chemnitz University of Technology ; 2018
    In:  Technologies for Lightweight Structures (TLS) Vol. 1, No. 2 ( 2018-01-26)
    In: Technologies for Lightweight Structures (TLS), Chemnitz University of Technology, Vol. 1, No. 2 ( 2018-01-26)
    Abstract: In this work the increase of the tensile shear strength by means of microstructuring of the metallic part for ultrasonic vibration assisted joining of hybrid compounds is presented. The aluminum alloy EN AW-5083 and a carbon fibre-reinforced plastic (CFRP) from Bond Laminates are used as a material combination. A suitable method is electrochemical processing (ECM). The microstructuring is carried out with continuous electrolyte free jet machining (Jet-ECM): Characteristic of this technology is the restriction of the electric current to a limited area of the electrolyte jet. After describing the materials and sample geometry used, the Jet-ECM technology and the ultrasonic vibration assisted joining process are explained. The strength of the joint is assessed by means of a tensile shear test. The determined results of the tensile shear strength for hybrid connections between microstructured aluminum sheets and CFRP are compared with those of unstructured aluminum sheets. Furthermore, the influence of the microstructure on the tensile shear strength achieved is discussed using metallographic cross-sections of the joining area.
    Type of Medium: Online Resource
    ISSN: 2512-4587
    Language: Unknown
    Publisher: Chemnitz University of Technology
    Publication Date: 2018
    detail.hit.zdb_id: 2889893-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2007
    In:  Journal of Polymer Science Part B: Polymer Physics Vol. 45, No. 16 ( 2007-08-15), p. 2215-2231
    In: Journal of Polymer Science Part B: Polymer Physics, Wiley, Vol. 45, No. 16 ( 2007-08-15), p. 2215-2231
    Abstract: Inorganic–organic hybrid materials were prepared by free radical polymerization of styrene in the presence of varying amounts of the cluster Zr 6 O 4 (OH) 4 (methacrylate) 12 . Stepwise polymerization allowed the preparation of bubble‐ and crack‐free, transparent bulk samples on a 30 g scale with dimensions required for mechanical testing. Small‐angle X‐ray scattering investigations and transmission electron micrographs revealed that the clusters formed randomly distributed aggregates of random size. Solvent uptake in swelling experiments was related to the cluster proportion. Storage moduli in the glassy state were slightly increased when compared with neat polystyrene, but pronounced plateau moduli were observed above the glass transition temperature, which correlated to the cluster proportion. Plateau moduli were used to calculate network parameters such as network density. Onset temperatures of thermal decomposition and the glass transition temperatures of the cluster‐crosslinked polymers were higher than that of neat polystyrene. Thermal expansion coefficients were unaffected in the glassy state, but were gradually reduced above the glass transition temperature with increasing cluster proportion. Both the tensile moduli at room temperature and the yield points increased when polystyrene was doped with the cluster. The strain hardening moduli, as determined in compression tests at large deformations, increased linearly with the cluster proportion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2215–2231, 2007
    Type of Medium: Online Resource
    ISSN: 0887-6266 , 1099-0488
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2007
    detail.hit.zdb_id: 1473448-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...