GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Land Degradation & Development, Wiley, Vol. 28, No. 7 ( 2017-10), p. 1962-1972
    Abstract: Understanding the Mediterranean rangelands degradation trends is a key element of mitigating their vulnerability and enhancing their resilience. Climate change and its inherent effects on mean temperature and the precipitation variability can regulate the magnitude, frequency and duration of droughts and aridity with a profound effect on ecosystem productivity. Here we investigate the effects of climate change to project the development of vegetation in the Mediterranean rangelands by (i) estimating the relative Standardized Precipitation Index and a modification of the United Nations Environment Programme Aridity Index to classify climate variability, and (ii) modelling vegetation response to climate using the Food and Agriculture Organisation crop–water production function. Climate model data are obtained from nine general circulation models under Relative Concentration Pathways 2.6 and 8.5 of the fifth phase of the Coupled Model Intercomparison Project. After correcting climate model data for biases, results for two 40‐year future study periods are compared with the baseline period 1961–2000 within a domain that includes the European Mediterranean. We show that a gradual but robust increase of aridity and drought frequency is estimated for most of the Mediterranean region, impacting rangeland vegetation yields. Projected drought and aridity disturbances may well represent permanent shifts to a warmer and more frequently dry status. This alternative stability of climatic pressure lies outside the limits of ecosystem resilience and may indicate that in some cases vegetation will either adapt to the new conditions or be succeeded by more water‐stress tolerant species. Results raise concerns about the fate of the Mediterranean rangelands and the effectiveness of mitigation measures. Copyright © 2017 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Water, MDPI AG, Vol. 11, No. 10 ( 2019-09-23), p. 1976-
    Abstract: European agriculture and water policies require accurate information on climate change impacts on available water resources. Water accounting, that is a standardized documentation of data on water resources, is a useful tool to provide this information. Pan-European data on climate impacts do not recognize local anthropogenic interventions in the water cycle. Most European river basins have a specific toolset that is understood and used by local experts and stakeholders. However, these local tools are not versatile. Thus, there is a need for a common approach that can be understood by multi-fold users to quantify impact indicators based on local data and that can be used to synthesize information at the European level. Then, policies can be designed with the confidence that underlying data are backed-up by local context and expert knowledge. This work presents a simplified water accounting framework that allows for a standardized examination of climate impacts on water resource availability and use across multiple basins. The framework is applied to five different river basins across Europe. Several indicators are extracted that explicitly describe green water fluxes versus blue water fluxes and impacts on agriculture. The examples show that a simplified water accounting framework can be used to synthesize basin-level information on climate change impacts which can support policymaking on climate adaptation, water resources and agriculture.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Hydrology and Earth System Sciences Vol. 20, No. 5 ( 2016-05-10), p. 1785-1808
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 20, No. 5 ( 2016-05-10), p. 1785-1808
    Abstract: Abstract. Climate models project a much more substantial warming than the 2 °C target under the more probable emission scenarios, making higher-end scenarios increasingly plausible. Freshwater availability under such conditions is a key issue of concern. In this study, an ensemble of Euro-CORDEX projections under RCP8.5 is used to assess the mean and low hydrological states under +4 °C of global warming for the European region. Five major European catchments were analysed in terms of future drought climatology and the impact of +2 °C versus +4 °C global warming was investigated. The effect of bias correction of the climate model outputs and the observations used for this adjustment was also quantified. Projections indicate an intensification of the water cycle at higher levels of warming. Even for areas where the average state may not considerably be affected, low flows are expected to reduce, leading to changes in the number of dry days and thus drought climatology. The identified increasing or decreasing runoff trends are substantially intensified when moving from the +2 to the +4° of global warming. Bias correction resulted in an improved representation of the historical hydrology. It is also found that the selection of the observational data set for the application of the bias correction has an impact on the projected signal that could be of the same order of magnitude to the selection of the Global Climate Model (GCM).
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Land, MDPI AG, Vol. 10, No. 9 ( 2021-09-12), p. 964-
    Abstract: The risk of erosion is particularly high in Mediterranean areas, especially in areas that are subject to a not so effective agricultural management–or with some omissions–, land abandonment or wildfires. Soils on Crete are under imminent threat of desertification, characterized by loss of vegetation, water erosion, and subsequently, loss of soil. Several large-scale studies have estimated average soil erosion on the island between 6 and 8 Mg/ha/year, but more localized investigations assess soil losses one order of magnitude higher. An experiment initiated in 2017, under the framework of the SoilCare H2020 EU project, aimed to evaluate the effect of different management practices on the soil erosion. The experiment was set up in control versus treatment experimental design including different sets of treatments, targeting the most important cultivations on Crete (olive orchards, vineyards, fruit orchards). The minimum-to-no tillage practice was adopted as an erosion mitigation practice for the olive orchard study site, while for the vineyard site, the cover crop practice was used. For the fruit orchard field, the crop-type change procedure (orange to avocado) was used. The experiment demonstrated that soil-improving cropping techniques have an important impact on soil erosion, and as a result, on soil water conservation that is of primary importance, especially for the Mediterranean dry regions. The demonstration of the findings is of practical use to most stakeholders, especially those that live and work with the local land.
    Type of Medium: Online Resource
    ISSN: 2073-445X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2682955-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 376, No. 2119 ( 2018-05-13), p. 20160452-
    Abstract: We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global warming. Some areas are projected to experience shorter meteorological drought events and less severe low flows, although longer droughts and/or decreases in low flows are projected in many other areas, particularly southern Africa and South America. Flows in the Amazon are projected to decline by up to 25%. Increases in either heavy rainfall or drought events imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this vulnerability is projected to remain smaller than at 2°C global warming in approximately 76% of developing countries. At 2°C, four countries are projected to reach unprecedented levels of vulnerability to food insecurity. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.
    Type of Medium: Online Resource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2018
    detail.hit.zdb_id: 208381-4
    detail.hit.zdb_id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Hydrology, Elsevier BV, Vol. 385, No. 1-4 ( 2010-5), p. 150-164
    Type of Medium: Online Resource
    ISSN: 0022-1694
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 240687-1
    detail.hit.zdb_id: 1473173-3
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  International Journal of Biometeorology Vol. 60, No. 8 ( 2016-8), p. 1205-1215
    In: International Journal of Biometeorology, Springer Science and Business Media LLC, Vol. 60, No. 8 ( 2016-8), p. 1205-1215
    Type of Medium: Online Resource
    ISSN: 0020-7128 , 1432-1254
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 1459227-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: CATENA, Elsevier BV, Vol. 231 ( 2023-10), p. 107318-
    Type of Medium: Online Resource
    ISSN: 0341-8162
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1492500-X
    detail.hit.zdb_id: 519608-5
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 374, No. 6564 ( 2021-10-08), p. 158-160
    Abstract: Under continued global warming, extreme events such as heat waves will continue to rise in frequency, intensity, duration, and spatial extent over the next decades ( 1 – 4 ). Younger generations are therefore expected to face more such events across their lifetimes compared with older generations. This raises important issues of solidarity and fairness across generations ( 5 , 6 ) that have fueled a surge of climate protests led by young people in recent years and that underpin issues of intergenerational equity raised in recent climate litigation. However, the standard scientific paradigm is to assess climate change in discrete time windows or at discrete levels of warming ( 7 ), a “period” approach that inhibits quantification of how much more extreme events a particular generation will experience over its lifetime compared with another. By developing a “cohort” perspective to quantify changes in lifetime exposure to climate extremes and compare across generations (see the first figure), we estimate that children born in 2020 will experience a two- to sevenfold increase in extreme events, particularly heat waves, compared with people born in 1960, under current climate policy pledges. Our results highlight a severe threat to the safety of young generations and call for drastic emission reductions to safeguard their future.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Nature, Springer Science and Business Media LLC, Vol. 608, No. 7921 ( 2022-08-04), p. 80-86
    Abstract: Risk management has reduced vulnerability to floods and droughts globally 1,2 , yet their impacts are still increasing 3 . An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data 4,5 . On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change 3 .
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...