GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (1)
Material
Language
Years
Subjects(RVK)
  • Physics  (1)
RVK
  • 1
    Online Resource
    Online Resource
    American Vacuum Society ; 2011
    In:  Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena Vol. 29, No. 6 ( 2011-11-01)
    In: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, American Vacuum Society, Vol. 29, No. 6 ( 2011-11-01)
    Abstract: The authors investigated the formation of nanometer-scale pore (nanopore) arrays by chemical vapor deposition (CVD) of heteroepitaxial SiC films on Si(100) membranes prepared by anisotropic etching of silicon on insulator substrates from the back-side surfaces. SiC heteroepitaxial films with thicknesses of ∼10 nm were grown by pulse jet CVD of CH3SiH3 gas. During the SiC growth, inverted pyramidal pits with {111} facets grew into the Si membranes due to the surface diffusion of Si atoms outward from the bulk Si. Nanopores were formed at the tips of the inverted pyramidal pits. The pore sizes were found to be dependent on the existence of the buried oxide layers under the Si membranes. It is suggested that maintaining the {111} facets during the SiC growth on the Si membrane is essential for smaller size (∼nm) pore formation.
    Type of Medium: Online Resource
    ISSN: 2166-2746 , 2166-2754
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2011
    detail.hit.zdb_id: 3117331-7
    detail.hit.zdb_id: 1475429-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...