GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Sciences  (1)
Material
Publisher
Language
Years
Subjects(RVK)
RVK
  • 1
    In: Journal of Metamorphic Geology, Wiley, Vol. 40, No. 3 ( 2022-04), p. 489-516
    Abstract: The Taean Formation on the central western margin of the Korean Peninsula contains layered metapelite, quartzo‐feldspathic schist, amphibolite, calcsilicate, and impure marble. The layering was formed by tectonic transposition of the original bedding. The formation has lithologic and isotopic age signatures similar to those of metasedimentary rocks of the Imjingang Belt, which is the eastern extension of the Qinling–Dabie–Sulu Belt, and the depositional age of the formation can be constrained to the Late Devonian. The metamorphic pressure–temperature ( P–T ) path for the formation is characterized by a high ΔP/ΔT prograde part and subsequent near‐isothermal decompression with peak P–T conditions of 600–620°C and 9.0–10.5 kbar, based on observations of mineral assemblages and phase equilibria modelling. Strong compressional deformation (D n ) produced a N–S‐trending S n foliation that transposed the earlier S n–1 and isoclinal F n folds and was coeval with an episode of medium‐ to high‐pressure amphibolite‐facies metamorphism. The NNE–SSW‐trending left‐lateral Ryeseonggang Fault played a key role in producing the N–S distribution of the metamorphosed forearc deposits along the western coast of the Korean Peninsula. The peak metamorphism and deformation occurred during the early Permian to Early Triassic (276–250 Ma), with retrogression taking place during the Late Triassic ( c . 230 Ma), as inferred from new U–Pb zircon age data and previous titanite and muscovite ages for the formation. The clockwise P–T–t (time)–d (deformation) path for the Taean Formation indicates rapid burial during D n followed by rapid exhumation during the Permian–Triassic collision between the Qinling microcontinent and the North China Craton.
    Type of Medium: Online Resource
    ISSN: 0263-4929 , 1525-1314
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020499-1
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...