GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 3 ( 2019-02)
    Abstract: Oil reservoir souring and associated material integrity challenges are of great concern to the petroleum industry. The bioengineering strategy of nitrate injection has proven successful for controlling souring in some cases, but recent reports indicate increased corrosion in nitrate-treated produced water reinjection facilities. Sulfide-oxidizing, nitrate-reducing bacteria (soNRB) have been suggested to be the cause of such corrosion. Using the model soNRB Sulfurimonas sp. strain CVO obtained from an oil field, we conducted a detailed analysis of soNRB-induced corrosion at initial nitrate-to-sulfide (N/S) ratios relevant to oil field operations. The activity of strain CVO caused severe corrosion rates of up to 0.27 millimeters per year (mm y −1 ) and up to 60-μm-deep pitting within only 9 days. The highest corrosion during the growth of strain CVO was associated with the production of zero-valent sulfur during sulfide oxidation and the accumulation of nitrite, when initial N/S ratios were high. Abiotic corrosion tests with individual metabolites confirmed biogenic zero-valent sulfur and nitrite as the main causes of corrosion under the experimental conditions. Mackinawite (FeS) deposited on carbon steel surfaces accelerated abiotic reduction of both sulfur and nitrite, exacerbating corrosion. Based on these results, a conceptual model for nitrate-mediated corrosion by soNRB is proposed. IMPORTANCE Ambiguous reports of corrosion problems associated with the injection of nitrate for souring control necessitate a deeper understanding of this frequently applied bioengineering strategy. Sulfide-oxidizing, nitrate-reducing bacteria have been proposed as key culprits, despite the underlying microbial corrosion mechanisms remaining insufficiently understood. This study provides a comprehensive characterization of how individual metabolic intermediates of the microbial nitrogen and sulfur cycles can impact the integrity of carbon steel infrastructure. The results help explain the dramatic increases seen at times in corrosion rates observed during nitrate injection in field and laboratory trials and point to strategies for reducing adverse integrity-related side effects of nitrate-based souring mitigation.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Applied and Environmental Microbiology Vol. 70, No. 5 ( 2004-05), p. 2614-2620
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 70, No. 5 ( 2004-05), p. 2614-2620
    Abstract: While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory microcosms and in a bioremediation field trial. 16S rRNA gene-based PCR and denaturing gradient gel analysis revealed that the archaeal community in oil-free laboratory microcosms was stable for 26 days. In contrast, in oil-polluted microcosms a dramatic decrease in the ability to detect Archaea was observed, and it was not possible to amplify fragments of archaeal 16S rRNA genes from samples taken from microcosms treated with oil. This was the case irrespective of whether a bioremediation treatment (addition of inorganic nutrients) was applied. Since rapid oil biodegradation occurred in nutrient-treated microcosms, we concluded that Archaea are unlikely to play a role in oil degradation in beach ecosystems. A clear-cut relationship between the presence of oil and the absence of Archaea was not apparent in the field experiment. This may have been related to continuous inoculation of beach sediments in the field with Archaea from seawater or invertebrates and shows that the reestablishment of Archaea following bioremediation cannot be used as a determinant of ecosystem recovery following bioremediation. Comparative 16S rRNA sequence analysis showed that the majority of the Archaea detected (94%) belonged to a novel, distinct cluster of group II uncultured Euryarchaeota , which exhibited less than 87% identity to previously described sequences. A minor contribution of group I uncultured Crenarchaeota was observed.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 70, No. 5 ( 2004-05), p. 2603-2613
    Abstract: A field-scale experiment with a complete randomized block design was performed to study the degradation of buried oil on a shoreline over a period of almost 1 year. The following four treatments were examined in three replicate blocks: two levels of fertilizer treatment of oil-treated plots, one receiving a weekly application of liquid fertilizer and the other treated with a slow-release fertilizer; and two controls, one not treated with oil and the other treated with oil but not with fertilizer. Oil degradation was monitored by measuring carbon dioxide evolution and by chemical analysis of the oil. Buried oil was degraded to a significantly greater extent in fertilized plots, but no differences in oil chemistry were observed between the two different fertilizer treatments, although carbon dioxide production was significantly higher in the oil-treated plots that were treated with slow-release fertilizer during the first 14 days of the experiment. Bacterial communities present in the beach sediments were profiled by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene fragments and 16S rRNA amplified by reverse transcriptase PCR. Similarities between the DGGE profiles were calculated, and similarity matrices were subjected to statistical analysis. These analyses showed that although significant hydrocarbon degradation occurred both in plots treated with oil alone and in the plots treated with oil and liquid fertilizer, the bacterial community structure in these plots was, in general, not significantly different from that in the control plots that were not treated with oil and did not change over time. In contrast, the bacterial community structure in the plots treated with oil and slow-release fertilizer changed rapidly, and there were significant differences over time, as well as between blocks and even within plots. The differences were probably related to the higher concentrations of nutrients measured in interstitial water from the plots treated with slow-release fertilizer. Bacteria with 16S rRNA sequences closely related ( 〉 99.7% identity) to Alcanivorax borkumensis and Pseudomonas stutzeri sequences dominated during the initial phase of oil degradation in the plots treated with slow-release fertilizer. Field data were compared to the results of previous laboratory microcosm experiments, which revealed significant differences.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2002
    In:  Applied and Environmental Microbiology Vol. 68, No. 11 ( 2002-11), p. 5537-5548
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 68, No. 11 ( 2002-11), p. 5537-5548
    Abstract: Degradation of oil on beaches is, in general, limited by the supply of inorganic nutrients. In order to obtain a more systematic understanding of the effects of nutrient addition on oil spill bioremediation, beach sediment microcosms contaminated with oil were treated with different levels of inorganic nutrients. Oil biodegradation was assessed respirometrically and on the basis of changes in oil composition. Bacterial communities were compared by numerical analysis of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Nutrient amendment over a wide range of concentrations significantly improved oil degradation, confirming that N and P limited degradation over the concentration range tested. However, the extent and rate of oil degradation were similar for all microcosms, indicating that, in this experiment, it was the addition of inorganic nutrients rather than the precise amount that was most important operationally. Very different microbial communities were selected in all of the microcosms. Similarities between DGGE profiles of replicate samples from a single microcosm were high (95% ± 5%), but similarities between DGGE profiles from replicate microcosms receiving the same level of inorganic nutrients (68% ± 5%) were not significantly higher than those between microcosms subjected to different nutrient amendments (63% ± 7%). Therefore, it is apparent that the different communities selected cannot be attributed to the level of inorganic nutrients present in different microcosms. Bioremediation treatments dramatically reduced the diversity of the bacterial community. The decrease in diversity could be accounted for by a strong selection for bacteria belonging to the alkane-degrading Alcanivorax/Fundibacter group. On the basis of Shannon-Weaver indices, rapid recovery of the bacterial community diversity to preoiling levels of diversity occurred. However, although the overall diversity was similar, there were considerable qualitative differences in the community structure before and after the bioremediation treatments.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2002
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2016
    In:  Applied and Environmental Microbiology Vol. 82, No. 1 ( 2016-01), p. 297-307
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 82, No. 1 ( 2016-01), p. 297-307
    Abstract: Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m −2 and 431 mA m −2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA ) and the α-subunit of the benzylsuccinate synthase (encoded by bssA ) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Applied Microbiology and Biotechnology Vol. 102, No. 6 ( 2018-3), p. 2525-2533
    In: Applied Microbiology and Biotechnology, Springer Science and Business Media LLC, Vol. 102, No. 6 ( 2018-3), p. 2525-2533
    Type of Medium: Online Resource
    ISSN: 0175-7598 , 1432-0614
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 1464336-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2003
    In:  Nature Vol. 426, No. 6964 ( 2003-11), p. 344-352
    In: Nature, Springer Science and Business Media LLC, Vol. 426, No. 6964 ( 2003-11), p. 344-352
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2003
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1994
    In:  Nature Vol. 368, No. 6470 ( 1994-3), p. 396-397
    In: Nature, Springer Science and Business Media LLC, Vol. 368, No. 6470 ( 1994-3), p. 396-397
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1994
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2010
    In:  Applied Microbiology and Biotechnology Vol. 85, No. 5 ( 2010-2), p. 1373-1381
    In: Applied Microbiology and Biotechnology, Springer Science and Business Media LLC, Vol. 85, No. 5 ( 2010-2), p. 1373-1381
    Type of Medium: Online Resource
    ISSN: 0175-7598 , 1432-0614
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 1464336-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2007
    In:  FEMS Microbiology Ecology Vol. 62, No. 2 ( 2007-11), p. 171-180
    In: FEMS Microbiology Ecology, Oxford University Press (OUP), Vol. 62, No. 2 ( 2007-11), p. 171-180
    Type of Medium: Online Resource
    ISSN: 0168-6496 , 1574-6941
    URL: Issue
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2007
    detail.hit.zdb_id: 1501712-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...