GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General works  (2)
Material
Publisher
Language
Years
Subjects(RVK)
  • General works  (2)
RVK
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2020
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 378, No. 2181 ( 2020-10-02), p. 20190368-
    In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 378, No. 2181 ( 2020-10-02), p. 20190368-
    Abstract: Two mooring arrays carrying sediment traps were deployed from September 2011 to August 2012 at ∼83°N on each side of the Gakkel Ridge in the Nansen and Amundsen Basins to measure downward particle flux below the euphotic zone (approx. 250 m) and approximately 150 m above seafloor at approximately 3500 and 4000 m depth, respectively. In a region that still experiences nearly complete ice cover throughout the year, export fluxes of total particulate matter (TPM), particulate organic carbon (POC), particulate nitrogen (PN), biogenic matter, lithogenic matter, biogenic particulate silica (bPSi), calcium carbonate (CaCO 3 ), protists and biomarkers only slightly decreased with depth. Seasonal variations of particulate matter fluxes were similar on both sides of the Gakkel Ridge. Somewhat higher export rates in the Amundsen Basin and differences in the composition of the sinking TPM and bPSi on each side of the Gakkel Ridge probably reflected the influence of the Lena River/Transpolar Drift in the Amundsen Basin and the influence of Atlantic water in the Nansen Basin. Low variations in particle export with depth revealed a limited influence of lateral advection in the deep barren Eurasian Basin. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.
    Type of Medium: Online Resource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2020
    detail.hit.zdb_id: 208381-4
    detail.hit.zdb_id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Royal Society ; 2020
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 378, No. 2181 ( 2020-10-02), p. 20190366-
    In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 378, No. 2181 ( 2020-10-02), p. 20190366-
    Abstract: The Arctic Ocean is considerably affected by the consequences of global warming, including more extreme seasonal fluctuations in the physical environment. So far, little is known about seasonality in Arctic marine ecosystems in particular microbial dynamics and cycling of organic matter. The limited characterization can be partially attributed to logistic difficulties of sampling in the Arctic Ocean beyond the summer season. Here, we investigated the distribution and composition of dissolved organic matter (DOM), gel particles and heterotrophic bacterial activity in the Fram Strait during summer and autumn. Our results revealed that phytoplankton biomass influenced the concentration and composition of semi-labile dissolved organic carbon (DOC), which strongly decreased from summer to autumn. The seasonal decrease in bioavailability of DOM appeared to be the dominant control on bacterial abundance and activity, while no temperature effect was determined. Additionally, there were clear differences in transparent exopolymer particles (TEP) and Coomassie Blue stainable particles (CSP) dynamics. The amount of TEP and CSP decreased from summer to autumn, but CSP was relatively enriched in both seasons. Our study therewith indicates clear seasonal differences in the microbial cycling of organic matter in the Fram Strait. Our data may help to establish baseline knowledge about seasonal changes in microbial ecosystem dynamics to better assess the impact of environmental change in the warming Arctic Ocean. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.
    Type of Medium: Online Resource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2020
    detail.hit.zdb_id: 208381-4
    detail.hit.zdb_id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...