GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (364)
Document type
  • 1
    Publication Date: 2022-09-20
    Description: Cruise SO288 served two scientific projects. The main objective of the COMBO project was the recovery of three seafloor geodetic networks of the GeoSEA array which were installed on the continental margin and outer rise offshore Iquique in northern Chileduring RV SONNE cruise SO244. This work was flanked by additional seismic and bathymetric surveys to characterize the sub-seafloor structure. The South American subduction system around 21°S has last ruptured in an earthquake in 1877 and wasidentified as a seismic gap prior to the 2014 Iquique earthquake (Mw=8.1). The southern portion of the segment remains unbroken by a recent earthquake and is currently in the latest stage of the interseismic phase of the seismic cycle. The seafloor geodetic measurements of the GeoSEA array provide a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The GeoSEA array consists of autonomous seafloor transponders installed on 4 m high tripods. The transponders within an array intercommunicate via acoustic signals for a period of up to three years. Recovery of the GeoSEA array using a remotely operated vehicle (ROV KIEL6000) required dedicated dives in the three network locations on the middle and lower continental slope (AREA1 and AREA3, respectively) and the outer rise of the Nazca plate (AREA2). All 23 GeoSEA transponders were successfully recovered and showed an 100% uptime during the monitoring period.The GeoSEA survey represents the first seafloor geodetic transect across a subduction zone, spanning from the oceanic outer rise to the lower and middle slope of the continental upper plate. The second project, HOMER, focused on biogeochemical and microbiological processes that affect carbon cycling of the Humboldt Current System off Northern Chile down to the deep ocean. For this purpose, water samples were collected for the detailed chemical characterization of organic matter and the activity of microorganisms. The work was complemented by onboard incubations of microbial populations from deep waters with naturally occurring organic matter.Cruise SO288 was the first expedition of RV SONNE back to the Pacific Ocean starting from a South American port during the COVID-19 pandemic. Despite strict safety and health requirements prior to boarding RV SONNE in Guayaquil, several members of the scientific and ship’s crew tested positive to COVID-19 two days after we left port. Containment measures were immediately put to action, flanked by a tight testing regime. Ten days after leaving Guayaquil, we were able to break the chains of infection and the scientific working program commenced.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-19
    Description: The Sumatran subduction zone exhibits strong seismic and tsunamogenic potential with the prominent examples of the 2004, 2005 and 2007 earthquakes. Here, we invert travel time data of local earthquakes for vp and vp/vs velocity models of the central Sumatran forearc. Data were acquired by an amphibious seismometer network consisting of 52 land stations and 10 ocean bottom seismometers located on a segment of the Sumatran subduction zone that had not ruptured in a great earthquake since 1797 but witnessed recent ruptures to the north in 2005 (Nias earthquake, Mw = 8.7) and to the south in 2007 (Bengkulu earthquake, Mw = 8.5). 2D and 3D vp velocity anomalies reveal the downgoing slab and the sedimentary basins. Although the seismicity pattern in the study area appears to be strongly influenced by the obliquely subducting Investigator Fracture Zone to at least 200 km depth, the 3D velocity model shows prevailing trench parallel structures at depths of the plate interface. The tomographic model suggests a thinned crust below the basin east of the forearc islands (Nias, Pulau Batu, Siberut) at ~ 180 km distance to the trench. Vp velocities beneath the magmatic arc and the Sumatran fault zone SFZ are around 5 km/s at 10 km depth and the vp/vs ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust. We find moderately elevated vp/vs values of 1.85 at ~ 150 km distance to the trench in the region of the Mentawai fault. Vp/vs ratios suggest absence of large scale alteration of the mantle wedge and might explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra. Reduced vp velocities beneath the forearc basin covering the region between Mentawai Islands and the Sumatra mainland possibly reflect a reduced thickness of the overriding crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-19
    Description: The southeastern flank of Etna volcano slides into the Ionian Sea at rates of centimeters per year. The prevailing understanding is that pressurization of the magmatic system, and not gravitational forces, controls flank movement, although this has also been proposed. So far, it has not been possible to separate between these processes, because no data on offshore deformation were available until we conducted the first long-term seafloor displacement monitoring campaign from April 2016 until July 2017. Unprecedented seafloor geodetic data reveal a 〉4-cm slip along the offshore extension of a fault related to flank kinematics during one 8-day-long event in May 2017, while displacement on land peaked at ~4 cm at the coast. As deformation increases away from the magmatic system, the bulk of Mount Etna’s present continuous deformation must be driven by gravity while being further destabilized by magma dynamics. We cannot exclude flank movement to evolve into catastrophic collapse, implying that Etna’s flank movement poses a much greater hazard than previously thought. The hazard of flank collapse might be underestimated at other coastal and ocean island volcanoes, where the dynamics of submerged flanks are unknown.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: During the winter 2012, from 20 January to 4 February, the German oceanographic FS METEOR cruise (M86/3) took place in the central-southern Adriatic Sea in the frame of “Adria LithosPHere InvestigAtion” (ALPHA [Kopp et al., 2013]). The primary goal of the project was high-resolution tomographic imaging of the crust and lithospheric mantle underneath the southern Adriatic Sea, the Apulia eastern margin and the external zone of the Dinaric thrust-belt by collecting offshore-onshore seismic data along three multi-fold wide-aperture profiles. The definition of reliable velocity models of the Adriatic lithosphere was considered crucial for a better understanding of the structure, fragmentation, geodynamic evolution, and seismotectonics of the Adria-Apulia microplates. The ALPHA Project was coordinated by Helmholtz Centre for Ocean Research Kiel, Germany (GEOMAR), former Leibniz Institute of Marine Sciences (German: Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR) and conducted in close cooperation with different European institutions of Germany, Albania, Croatia, Italy and Montenegro. The Istituto Nazionale di Geofisica Vulcanologia (INGV) participated by deploying land stations along two transects in the Apulia and Gargano Promontory to extend westwards the seismic profiles. The primary goal was to record shallow-to-deep seismic phases travelling along the transition between the Adriatic basin and the Apulia foreland. In this paper we present the field work related to the two Italian onshore transects, the recorded data, and the processing flow developed to highlight crustal and mantle refractions and wide-angle reflections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps–Apennines–Carpathians–Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-16
    Description: The convergent margin of the central Sunda Arc in Indonesia was the target of a reflection and refraction seismic survey conducted in 1998 and 1999. Along two seismic lines across the subduction complex off southern Sumatra and off Sunda Strait, coincident multichannel and wide-angle data were collected, complemented by two refraction strike-lines in the forearc basin off Sumatra. The combined analysis of the acquired data allows us to present a detailed model of the subduction zone where initiation of strain partitioning occurs due to the onset of oblique subduction. The dip of the subducted plate is well defined along both dip-lines and a lateral increase from 5° to 7° from beneath the outer high off Sumatra to Sunda Strait is supported by complementary gravity modelling. The downgoing slab is traced to a depth of more than 30km. On both reflection dip-lines, a clearly developed backstop structure underlying a trench slope break defines the landward termination of the active accretionary prism and separates it from the outer high. Active subduction accretion is supported by laterally increasing velocities between the deformation front and the active backstop structure. Seismic velocities of the outer high are moderate along both lines (〈5.8kms−1 at 20km depth), suggesting a sedimentary composition. Reduced reflectivity beneath a rugged top basement traced along the outer high of both dip-lines supports a high degree of deformation and material compaction. Several kilometres of sediment has accumulated in the forearc domain, although a distinct morphological basin is only recognized off southern Sumatra and is not developed off Sunda Strait. The bathymetric elevation of the Java shelf that is encountered in the southern Sunda Strait corresponds to increased velocities of a basement high there and is connected to extensional structures of the Sunda Strait transtensional basin. Differences observed in the morphology of the forearc domain are also reflected in the lower crustal structure. Off southern Sumatra, the velocity–depth model clearly indicates a continental-type crust underlying the forearc basin, whereas lower velocities are found beneath the Sunda Strait forearc domain. Off Sumatra, some 3-D constraint on the upper plate structure is gained from the refraction strike-lines, which in addition is supported by synthetic data modelling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-18
    Description: Highlights • We document marine forearc deformation in the Northern Chile seismic gap. • Upper-plate normal faulting off Northern Chile locally extends close to the trench. • Normal faults indicate that past earthquakes may reached the shallow plate-boundary. Abstract Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S–22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un-ruptured southern segment of the seismic gap.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-08
    Description: Key Points: Multibeam bathymetric and seismic reflection data image the structure of the North Chilean marine forearc and the oceanic Nazca plate The structural character and tectonic configuration of the offshore forearc and the oceanic plate change significantly along the margin The derived pattern of permanent deformation may hold information for studying seismicity or other types of short term deformation New multibeam bathymetry allows an unprecedented view of the tectonic regime and its along‐strike heterogeneity of the North Chilean marine forearc and the oceanic Nazca Plate between 19‐22.75°S. Combining bathymetric and backscatter information from the multibeam data with sub‐bottom profiler and published and previously unpublished legacy seismic reflection lines, we derive a tectonic map. The new map reveals a middle and upper‐slope configuration dominated by pervasive extensional faulting, with some faults outlining a 〉500 km long ridge that may represent the remnants of a Jurassic or pre‐Jurassic magmatic arc. Lower slope deformation is more variable and includes slope‐failures, normal faulting, re‐entrant embayments, and NW‐SE trending anticlines and synclines. This complex pattern likely results from the combination of subducting lower‐plate topography, gravitational forearc collapse, and the accumulation of permanent deformation over multiple earthquake cycles. We find little evidence for widespread fluid seepage despite a highly faulted upper‐plate. An explanation could be a lack of fluid sources due to the sediment starved nature of the trench and most of the upper‐plate in vicinity of the hyper‐arid Atacama Desert. Changes in forearc architecture partly correlate to structural variations of the oceanic Nazca Plate, which is dominated by the spreading‐related abyssal hill fabric and is regionally overprinted by the Iquique Ridge. The ridge collides with the forearc around 20‐21°S. South of the ridge‐forearc intersection, bending‐related horst‐and‐grabens result in vertical seafloor offsets of hundreds of meters. To the north, plate‐bending is accommodated by reactivation of the paleo‐spreading fabric and new horst‐and‐grabens do not develop.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-10
    Description: We study the erosive convergent margin of north-central Chile (at similar to 31 degrees S) by using high-resolution bathymetric, wide-angle refraction, and multichannel seismic reflection data to derive a detailed tomographic 2-D velocity-depth model. In the overriding plate, our velocity model shows that the lowermost crustal velocities beneath the upper continental slope are 6.0-6.5km/s, which are interpreted as the continental basement composed by characteristic metamorphic and igneous rocks of the Coastal Cordillera. Beneath the lower and middle continental slope, however, the presence of a zone of reduced velocities (3.5-5.0km/s) is interpreted as the outermost fore arc composed of volcanic rocks hydrofractured as a result of frontal and basal erosion. At the landward edge of the outermost fore arc, the bathymetric and seismic data provide evidence for the presence of a prominent trenchward dipping normal scarp (similar to 1km offset), which overlies a strong lateral velocity contrast from similar to 5.0 to similar to 6.0km/s. This pronounced velocity contrast propagates deep into the continental crust, and it resembles a major normal listric fault. We interpret this seismic discontinuity as the volcanic-continental basement contact of the submerged Coastal Cordillera characterized by a gravitational collapse of the outermost fore arc. Subduction erosion has, most likely, caused large-scale crustal thinning and long-term subsidence of the outermost fore arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...